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Abstract
Introduction  Chronic kidney disease (CKD) patients show high rates of cardiovascular disease (CVD) and mortality. 
In the general population, obesity, hypertension, and diabetes are known as the classical CVD risk factors. However, 
CKD patients have other predisposing CVD factors more associated with bone and mineral metabolism disorders 
(BMD). BMD originates from reduced 1,25-dihydroxy vitamin D and hypocalcemia, which lead to secondary 
hyperparathyroidism, with increased parathyroid hormone (PTH) levels and hyperphosphatemia as the progression 
of renal damage. Due to their pleiotropic effects, vitamin D and its analogs, such as cholecalciferol, calcitriol, or 
paricalcitol, have proven effective in controlling BMD and CVD. On the other hand, visceral adiposity has been 
shown to increase the risk for CVD in both the general and CKD populations via complex autocrine and paracrine 
hormonal mechanisms. This seems to be the case with fat surrounding the epicardium. Although it has not been 
widely evaluated, the fat surrounding the kidneys, or the perirenal adipose tissue (PAT), could also share similarities 
with the epicardial in terms of its potential contribution to the CVD risk observed in these patients. We conducted a 
preliminary study to assess differences in PAT on a sample of patients with CKD presenting diverse CVD history and 
who were receiving different vitamin D-receptor activators.

Methods/Results  An observational study was performed at UNIRENAL Center (Venezuela), from January to 
November 2015. Analytical and clinical parameters were evaluated. The PAT thickness was measured in centimeters 
through a B-mode ultrasound. Thus, we included 83 CKD patients treated with vitamin D or analogs (mean age 
58.3 ± 16y); 57.83% were females. Nearly half of the sample was classified as CKD-G3 (n = 40). Prior history of CVD was 
present in 55.4% (N = 46) of participants. Must of the patients (n = 46;55.42%) receiving oral cholecalciferol (1000 IU/
day) as part of the treatment for lower levels of vitamin D or BMD related to CKD (mainly elevated PTH), followed 
by those under calcitriol at 0.5 mcg/day (n = 27;32.53%), and around 12% (n = 10;12.05%) on paricalcitol (1 mcg/
day). The mean treatment vintage was 20 ± 6 months for cholecalciferol, 18 ± 4 months for calcitriol, and 16 ± 2 
months for paricalcitol. Those with a history of CVD (n = 46) showed higher levels of urea (mean 62.0vs45.2 mg/dl, 
p < 0.05), uric acid (mean 5.5vs4.3 mg/dl; p < 0.03), and iPTH (mean 186.2vs65.2pcg/dl; p < 0.05) than patients free of 
CVD events (n = 37). These findings were also in parallel with decreased renal function in the group with previous 
CVD history, as evidenced by a significantly lower eGFR (mean 53.55vs89.00 ml/min/1.73 m2,p < 0.001). Similarly, 
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Introduction
Patients with chronic kidney disease (CKD) show high 
cardiovascular complication rates [1–3], being cardiovas-
cular disease (CVD) their main cause of morbidity and 
mortality [4]. Obesity, dyslipidemia, hypertension, and 
diabetes are known as the classical cardiovascular risk 
factors. However, other risk factors predisposing to CVD 
that appear in CKD are associated with the bone and 
mineral metabolism disorders (BMD) frequently pres-
ent in these patients [5, 6]. BMD originates from reduced 
1,25-dihydroxy vitamin D and hypocalcemia, which lead 
to secondary hyperparathyroidism, with increased para-
thyroid hormone (PTH) levels [7] and hyperphosphate-
mia as the kidney damage progresses [8].

Diverse therapeutic strategies are used to address BMD 
in CKD. Due to their pleiotropic effects, vitamin D and 
its analogs, such as cholecalciferol, calcitriol, or parical-
citol, have proven effective in controlling BMD second-
ary to CKD and cardiovascular pathologies [9, 10]. They 
bind to the vitamin D receptor in the parathyroid gland, 
thereby reducing PTH synthesis, increasing calcium 
absorption and the release of phosphorus from the bone 
[11]. As a result, they may induce hypercalcemia and 
hyperphosphatemia, with the consequent risk of vascular 
calcifications. This adverse effect is often reported with 
the use of calcitriol, but rarely with paricalcitol [12, 13]. 
On the contrary, calcimimetic agents, such as cinacalcet 
and etelcalcetide, which increase the sensitivity of the 
calcium-sensing receptor to extracellular calcium and 
decrease PTH secretion [14], may cause hypocalcemia 
[15, 16], leading to an increased risk of arrhythmia and 
heart failure [17].

On the other hand, visceral adiposity has been shown 
to increase the risk for CVD in both the general popu-
lation and patients with CKD via complex autocrine and 
paracrine hormonal mechanisms [18]. This seems to be 
the case with the adipose tissue surrounding the epicar-
dium, also known as the epicardial adipose tissue (EAT) 
[19]. Although it has not been widely evaluated, the adi-
pose tissue surrounding the kidneys, or the perirenal adi-
pose tissue (PAT), could also share similarities with the 
EAT in terms of its potential contribution to cardiovas-
cular risk [20, 21].

PAT, which comprises both white and brown adipose 
tissue, is anatomically located in the retroperitoneal space 

around the kidneys. It is richly vascularized by branches 
of the abdominal aorta, including the inferior adrenal, 
dorsal, and gonadal arteries [22, 23]. As a perivisceral fat, 
PAT is metabolically active. The specific cells from this 
tissue, or adipocytes, secrete several adipokines, such 
as adiponectin and leptin, which are cytokines involved 
in energy metabolism that also influence vascular func-
tion, inflammation and macrophage polarization to an 
anti-inflammatory or pro-inflammatory phenotype [24, 
25]. Therefore, the proximity to major vascular structures 
and in a dysfunctional environment suggests that PAT 
may contribute to cardiovascular disease through various 
systemic and/or local mechanisms, including hormone 
secretion, inflammation, and lipid metabolism alterations 
[26, 27] (Fig. 1).

Another potential contribution of PAT to cardiovas-
cular physiopathology is the link with the vitamin D- 
fibroblast growth factor 23 (FGF-23) axis. Adipocytes 
are capable of storing vitamin D, and vitamin D receptor 
activation has been shown to influence the expression of 
the FGF-23, a key regulator of phosphate metabolism, 
that has been implicated in CVD among CKD patients 
[28]. The dysregulation of this axis via an imbalance in 
the concentrations of adiponectin and leptin, which 
modulate FGF-23 production, may be responsible for the 
cardiovascular load in CKD-affected patients [29, 30].

Given the immune-regulatory properties of vitamin D 
and its link with cardiovascular risk factors, diverse stud-
ies focused on the morphometric and biochemical effects 
of vitamin D deficiency on EAT. Increased EAT thick-
ness, in parallel with higher levels of pro-inflammatory 
interleukins at the EAT level, was observed in animal 
and clinical populations with vitamin D deficiency [31–
34]. Consequently, supplementation with cholecalciferol 
was reported to decrease EAT thickness [35] and switch 
the EAT macrophage phenotype to the anti-inflamma-
tory M2 state [36]. However, the potential association 
between vitamin D supplementation and PAT is scarcely 
explored. To date, only one study conducted on murine 
models revealed that those with diabetic kidney disease 
showed hypertrophic PAT in comparison with the con-
trols and that vitamin D supplementation induced PAT 
‘browning´, with a structural change in adipocyte mito-
chondria [37]. On the other hand, the differential effects 

the mean PAT thickness was elevated in the group with a history of CVD in relation to those with no previous CVD 
events (0.99vs0.80 cm; SD ± 0.30;p ~ 0.05). The comparative analysis for the patients with prior cardiovascular events 
between the three treatments revealed that those on paricalcitol had lesser PAT accumulation than those treated with 
cholecalciferol or calcitriol (p < 0.05). In conclusion, our study shows that PAT thickness in CKD may be influenced by 
vitamin D analog-based treatment. Further research is needed to better understand the mechanistic links between 
PAT, BMD, and CVD in this population.
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induced by the diverse vitamin D analogs in either EAT 
or PAT are yet to be reported.

Based on the aforementioned, we hypothesized that 
PAT characteristics in patients with CKD could not only 
vary depending on their cardiovascular risk factors, but 
also concerning the treatment received for BMD, par-
ticularly vitamin D and analogs. Under this hypothesis, 
we conducted a preliminary study to assess differences in 
PAT thickness on a sample of patients with CKD present-
ing diverse CVD history and who were receiving different 
vitamin D-receptor activators.

Methods
Design
An observational study was performed at the UNIRE-
NAL Clinical Center, Puerto Ordaz City in Venezuela, 
from January to November 2015. The study protocol was 
detailed in a prior study by our group [21], and here it is 
briefly summarized.

Patient recruitment
Patients diagnosed with CKD and receiving treatment 
with vitamin D and analogs were the target population 
for this study. They needed to meet the following inclu-
sion criteria to be invited to participate: (1) age ≥ 18 years; 
(2) diagnosis of CKD as per the Kidney Disease Improv-
ing Global Outcomes (KDIGO) 2012 definition (abnor-
mality of kidney structure or function, present for more 
than 3 months, with health implications), classified as 
grades (G) G1 to G4 (not on dialysis); (3) treatment with 
vitamin D or analogs (cholecalciferol, calcitriol, parical-
citol), not in combination, initiated one year before and 
following the current guidelines at that moment [38] 
depending of 25(OH)D3 and intact (iPTH) levels (mainly 
iPTH levels); (4) life expectancy > 1 year. The CKD Epide-
miology Collaboration (CKD-EPI) equation was used to 
calculate the estimated glomerular filtration rate (eGFR). 
Also, we used the CKD classification guidelines modi-
fied by KDIGO, which define an: eGFR (in mL/min/1.73 

Fig. 1  Morphological and biochemical changes of adipocytes in response to inflammatory/anti-inflammatory stimuli. The process of ‘whitening’ consists 
of the gradual conversion of brown adipocytes, which contain many mitochondria expressing uncoupled protein-1 (UCP-1) and are responsible for ther-
moregulation, into white adipocytes, whose main function is fat storage. Beige adipocytes represent an intermediate state between brown and white 
adipocytes. The ‘whitening’ process generally occurs in response to a pro-inflammatory environment, in which the predominant adipokine is leptin, which 
triggers the polarization of macrophages to an M1 phenotype. The opposite process or ‘browning’, in which the white adipocyte becomes brown, is also 
possible in response to anti-inflammatory stimuli: the predominant adipokine at this point is adiponectin, which prompts the macrophage polarization 
to an M2 phenotype
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m2) > 90 as CKD G1; from 60 to 89 as CKD G2; between 
30 and 59 as CKD G3; and from 15 to 29 as CKD G4.

Patients excluded from this study were those suffer-
ing from an acute inflammatory process, such as infec-
tion, active cancer, or other inflammatory states beyond 
the ones mentioned in inclusion, as well as subjects with 
acute kidney injury, polycystic kidney disease, CKD 
G5 (eGFR < 15  ml/min/1.73m2) and/or requiring renal 
replacement therapy.

Clinical data collection
Electronic medical records from patients were assessed 
to collect the following clinical information: age; sex; 
eGFR and CKD grade; weight and height at recruitment 
onset; prior history of cardiovascular events (understood 
as coronary artery disease, stroke, or peripheral vascular 
disease); vitamin D-based treatment (cholecalciferol, cal-
citriol, paricalcitol), dosage and treatment duration.

Blood pressure (BP) was measured in the office at 
recruitment onset with a digital monitor placed on the 
upper arm, while the patient was sitting down with the 
arm on a table at the same height as the heart and after 
3 min of resting (mean value of three measures).

Analytical data collection
Blood samples to measure mineral metabolism, renal 
function, and inflammation markers were collected after 
8 to 12 h of fasting and a 15-minute resting period, and 
stored at a temperature between 4  °C and 15  °C. The 
samples were later centrifuged in cold for 15  min and 
processed by absorbent photometry and turbidometry 
on an automatized analyzer (MINDRAY® model: BS-240 
China; Mindray Medical International Limited, Shen-
zhen, China).

Imaging data collection
PAT thickness was measured in centimeters (cm) through 
a B-mode ultrasound with a 3.5-MHz convex transductor 
(Alpinion® E-CUBE 9; Alpinion Medical Systems, Seoul, 
Korea). Patients underwent a bilateral renal ultrasound, 
and the kidneys were measured anteroposteriorly, trans-
versally, and longitudinally. PAT was measured in the dis-
tal third between the cortex and the hepatic border and/
or spleen (Fig. 2). The imaging studies were performed by 
one of the authors (LDM) and stored in DICOM format. 
Then, in the radiology department of the hospital, the 
imaging were processed by an expert radiologist blind to 
patient data.

Fig. 2  Imaging of the perirenal adipose tissue measurement by ultrasound. The arrow shows the adipose tissue thickness in the right kidney [21]
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Ethical aspects
The research was conducted following the Declaration 
of Helsinki as revised in 2013. The Ethics Committee of 
Biomedical Research approved the study protocol. The 
informed consent was obtained from all patients before 
being included in the study.

Statistics
The Kolmogorov-Smirnov test was used to test if the data 
followed a normal distribution. Descriptive data were 
presented as mean ± standard deviation (SD). Compara-
tive analyses were performed through Student’s t-tests 
after log transformation. Comparisons of clinical, ana-
lytical, and imaging data were made between patients 
divided according to their prior history of cardiovascular 
events (history of cardiovascular disease: yes/no). PAT 
thickness in patients with previous CVD was later com-
pared between the three treatment groups (cholecalcif-
erol, calcitriol, and paricalcitol). The alpha value was set 
at 0.05. Calculations were performed with the SPSS 17® 
software.

Results
Demographic and clinical characteristics of our sample
Our sample was composed of 83 patients with CKD 
under treatment with vitamin D and analogs, with a 
mean age of 58.3 ± 16 years, all of them of Hispanic eth-
nicity. Forty-eight of our patients (57.83%) were females. 

According to the eGFR, nearly half of our sample was 
classified as CKD-G3 (n = 40), followed by G2 (n = 22) and 
G1 (n = 15), with only a few patients considered as CKD-
G4 (n = 6). Prior history of CVD was present in 46 par-
ticipants (55.42%).

The majority of the patients (n = 46; 55.42%) were 
receiving oral cholecalciferol (1000 IU/day) as part of the 
treatment for lower levels of vitamin D or BMD related 
to CKD (mainly elevated iPTH), followed by those under 
calcitriol at 0.5 mcg/day (n = 27; 32.53%), and around 
12% patients (n = 10; 12.05%) on paricalcitol (1 mcg/day). 
No combination of these drugs was used in any of the 
patients. The mean treatment duration was 20 ± 6 months 
for cholecalciferol, 18 ± 4 months for calcitriol, and 16 ± 2 
months for paricalcitol.

Comparisons of clinical, analytical and imaging parameters 
based on CVD history
Mean values of clinical, analytical, and PAT thickness are 
shown in Table 1, comparing patients with and without 
previous cardiovascular disease history. Those with a car-
diovascular disease history (n = 46) showed significantly 
higher serum levels of urea (mean 62.0 vs. 45.2  mg/
dl, p < 0.05), uric acid (mean 5.5 vs. 4.3  mg/dl; p < 0.03), 
and iPTH (mean 186.2 vs. 65.2 pcg/dl; p < 0.05) than the 
patients free of cardiovascular events (n = 37). These find-
ings were also in parallel with a more decreased renal 
function in the group with previous CVD history, as 
evidenced by a significantly lower eGFR (mean 53.55 vs. 
89.00  ml/min/1.73 m2 [CKD-EPI], p < 0.001). Regarding 
the inflammatory status, patients with prior CVD history 
also showed significantly higher levels of C-reactive pro-
tein (CRP) (7.1 vs. 1.2  mg/dL; p < 0.005). No significant 
differences were observed for the other analytical param-
eters between patients with and without CVD history.

The mean PAT thickness was observed to be elevated in 
the group of patients with a history of CVD in relation to 
those with no previous cardiovascular events, although 
this difference did not reach statistical significance (0.99 
vs. 0.80 cm; SD ± 0.30; p ~ 0.05) (Fig. 3).

When distinguishing between groups of treatment, 
28 of the patients on cholecalciferol (60.87%) referred 
prior CVD history, whereas this occurred with 16 of 
the patients (59.26%) receiving calcitriol and in 2 of the 
patients on paricalcitol (20%). The comparative analysis 
for the patients with prior cardiovascular events between 
the three treatments revealed that those on paricalci-
tol had significantly lesser PAT accumulation than those 
treated with cholecalciferol or calcitriol (p < 0.05) (Fig. 4). 
These results were not adjusted for confounding factors 
such as weight, height, body mass index (BMI), and/or 
any other treatments.

Table 1  General characteristics of patients according to the 
history of cardiovascular disease
History of cardiovascular disease

Yes (n = 46) No (n = 37)
Mean SD Mean SD p

Body mass index (kg/m2) 26.0 ± 7.0 27.7 ± 7.8 --
eGFR (mL/min/1.73 m2) 53.5 ± 30.6 89.0 ± 39.2 < 0.001
BP Mean (mmHg) 101.3 ± 23.4 96.4 ± 15.4 --
Hemoglobin (gr/dL) 12.4 ± 1.3 12.5 ± 1.9 --
Glucose (mg/dL) 104.5 ± 19.6 102.8 ± 31.3 --
Creatinine (mg/dL) 1.5 ± 1.1 1.2 ± 1.0 --
Urea 62.0 ± 33.4 45.2 ± 32.7 < 0.05
LDL-C (mg/dL) 106.5 ± 28.9 107.9 ± 31.6 --
Triglycerides (mg/dL) 131.0 ± 57.4 132.3 ± 73.3 --
Uric acid (mg/dL) 5.5 ± 1.9 4.3 ± 2.0 < 0.03
Albumin (gr/L) 3.7 ± 0.6 4.0 ± 0.5 --
Calcium (mg/dL) 9.4 ± 0.6 9.4 ± 0.7 --
Phosphate (mg/dL) 3.8 ± 0.9 3.4 ± 0.8 --
Phosphatase Alkaline (IU/L) 139.0 ± 80.0 189.0 ± 45.2 --
iPTH (pg/mL) 186.2 ± 194.3 65.2 ± 31.0 < 0.05
CRP (mg/dL) 7.07 ± 10.5 1.29 ± 1.26 < 0.005
PAT thickness (cm) 0.99 ± 0.3 0.80 ± 0.3 ~ 0.05
Data are presented as mean ± standard deviation (SD). Comparisons 
between groups were made via the Student’s t-test after log transformation. 
Abbreviations: eGFR, estimated glomerular filtration rate; BP, blood pressure; 
LDL-C, low-density lipoprotein cholesterol; iPTH, intact parathyroid hormone; 
CRP, C-Reactive protein; PAT, perirenal adipose tissue
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Discussion
The results from our study suggest a potential association 
between PAT thickness and the presence of cardiovascu-
lar events in patients with CKD, highlighting that the role 
of PAT as a potential marker of cardiovascular risk needs 
in-depth assessment. Furthermore, the percentage of 
patients with prior CVD history in the paricalcitol group, 
which was relatively lower than with the other treat-
ments, showed significantly decreased PAT thickness, 

suggesting a potential protective effect associated with 
this therapeutic regimen.

The finding of a thicker average PAT in patients with 
prior cardiovascular history raises the question about the 
potential role of region-specific fat storages as indepen-
dent risk factors for cardiovascular damage. Although 
this phenomenon has been widely explored with the EAT 
[20, 39], the mechanisms underlying this association 
remain incompletely understood. As aforementioned, 
the adipose tissue behaves as a paracrine and endocrine 
organ able to influence vascular dysfunction and the 
inflammation status, both locally and systemically, via 
the secretion of different factors (adipokines) depending 
on the predominant adipocyte phenotype (brown/beige/
white) (Fig. 1) [40].

Vitamin D deficit has been related to a greater preva-
lence of cancer and cardiovascular diseases [41–43]. The 
administration of cholecalciferol or vitamin D agonists 
has pleiotropic effects beyond controlling BMD, such as 
the regulation of immunological pathways that may be 
beneficial in patients with low-grade chronic inflamma-
tory states [44, 45]. Paricalcitol is a selective vitamin D 
receptor agonist associated with higher efficacy, higher 
survival rates, and a more adequate tolerability profile 
than cholecalciferol or calcitriol [46–48]. Several stud-
ies have reported anti-inflammatory and antioxidant 
actions induced by paricalcitol that may be independent 
of its effects on hemodynamics and PTH suppression 
[49–51]. In murine models, the administration of pari-
calcitol was associated with reduced macrophage infiltra-
tion in the glomerular and tubular tissues after inducing 
renal tubular injury. On a molecular level, this occurred 
in parallel with decreased renal IL-6 and tumor necro-
sis factor-alpha (TNF-α) levels, as well as lower NADPH 
activity, probably via inhibition of the NLRP3 inflamma-
some pathway [52–54]. Although this is the first study 
exploring the actions of paricalcitol on PAT, the anti-
inflammatory properties attributed to this drug could 
serve to support the hypothesized morphological and 
molecular actions at the PAT level.

As expected, our results show that those patients with 
a CVD history were more prone to higher levels of iPTH 
(mean 186.2 ± 194.3 vs. 65.2 ± 31.0 pg/mL; p 0.05) and 
CRP (mean 7.07 ± 10.5 vs. 1.29 ± 1.26  mg/dL; p < 0.005) 
than those free of events. Besides, those patients who 
have suffered prior cardiovascular events had increased 
uric acid serum levels (mean 5.5 ± 1.9 4.3 ± 2.0  mg/dL; 
p < 0.03). These findings are in line with the notion that 
altered bone and mineral metabolism are intimately 
related to chronic inflammatory status in renal-affected 
patients. Thus, careful control of these altered parame-
ters may help to improve these conditions and avoid vas-
cular as well as non-vascular complications.

Fig. 4  Distribution of patients according to vitamin D analogs treatments 
and perirenal fat thickness

 

Fig. 3  Distribution of the patients according to the history of cardiovascu-
lar disease and perirenal fat thickness
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Despite the insights provided by our study, several 
limitations should be acknowledged. The observational 
nature of our study design precludes causal inference, 
and the relatively small sample size limits the generaliz-
ability of our findings. Additionally, we lacked compre-
hensive data on more inflammatory markers and bone 
and mineral metabolism parameters, which may have 
provided further insights into the mechanisms linking 
PAT with cardiovascular risk in CKD patients. Regarding 
vitamin D serum levels, there were many missing values, 
and despite many patients showing higher or duplicate 
levels of iPTH, no vitamin D serum levels were ordered 
since they received direct treatment with paricalcitol 
depending on their iPTH serum levels.

Conclusion
In conclusion, our study highlights that PAT thickness in 
CKD may be influenced by the specific vitamin D ana-
log-based treatment used for BMD. In this regard, the 
use of paricalcitol could be linked to a diminishing effect 
on PAT thickness, which may be associated with a more 
favorable cardiovascular prognosis. Further research and 
large prospective cohort studies are needed to better 
understand the mechanistic links between PAT, adipo-
kines, bone and mineral metabolism, and cardiovascular 
health in this population of patients. Ultimately, a deeper 
understanding of these pathways may open new avenues 
for the development of novel therapeutic strategies, such 
as those related to the bone-mineral, metabolic, and 
renal axis, to mitigate cardiovascular risk and improve 
outcomes in CKD patients.
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