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Frailty risk prediction models for patients 2
undergoing maintenance hemodialysis
in China: a systematic review

Yu Zhong'", Songmei Cao"”, Liangying Chen'", Teng Li*" and Wei Ye'"

Abstract

Objective To promote the application of high-quality frailty risk prediction models in the field of debilitation among
Chinese patients undergoing MHD, and to provide a basis for optimisation and improvement of future studies.

Methods A literature search was conducted in Chinese and English databases (PubMed, Web of Science, Cochrane
Library, CINAHL, Embase, CNKI, Wanfang, VIP, SinoMed) and the cutoff date for which was April 30, 2024. Literature
characteristics, types of studies, predictors, model construction methods and results were analysed and compared.

Results Ten studies met the inclusion criteria, and seven were focused on model development and validation. A
total of 12 predictive models were included across these 10 studies; three of these were solely model development
studies, while seven were both model development and validation. The area under the curve (AUC) for the subjects’
operating characteristics was > 0.7 in all ten studies. The most frequently identified predictors in the models included
age, nutritional status, the presence of multimorbidity, gender, and depression. While the overall applicability of the
ten studies was deemed satisfactory, it is important to note that all studies exhibited a high risk of bias, particularly
concerning the data analysis component.

Conclusion The frailty risk prediction models for patients undergoing maintenance hemodialysis have demonstrated
satisfactory applicability; however, they are all associated with a significant risk of bias and lack comprehensive
external validation. To develop more accurate and practical prediction models, future studies must rely on large-
sample, multicenter prospective cohort studies and adhere to a rigorous study design.
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Introduction

Chronic kidney disease (CKD) is globally recognized as
a significant public health issue. A systematic evaluation
conducted in 2022 revealed that the prevalence of CKD
in Asia ranges from 7.0 to 34.3%. Notably, China has the
highest number of adult CKD patients, with approxi-
mately 159.8 million cases [1]. End-Stage Renal Disease
(ESRD), a severe progression of Chronic Kidney Dis-
ease (CKD), is characterized by irreversible renal failure,
which results in disturbances in water, electrolyte, and
metabolite balance within the body, severely impacting
patients’ quality of life and life expectancy [2, 3]. Mainte-
nance hemodialysis (MHD) is the primary treatment for
patients with end-stage renal disease (ESRD) [4]. How-
ever, MHD cannot fully replicate the complex metabolic
and endocrine functions of healthy kidneys [5]. Patients
undergoing long-term hemodialysis often experience
a range of complications, with frailty being one of the
most common, affecting approximately 46-50% of this
population [6, 7]. Frailty is a complex physiological con-
dition characterized by a decline in an organism’s physi-
ological reserves, dysregulation across multiple systems,
increased vulnerability, and a diminished capacity to
withstand stressors [8]. The presence of frailty signifi-
cantly increases the risk of adverse clinical outcomes,
including falls, disability, cognitive decline, complications
related to vascular access, and potentially mortality [9,
10]. Therefore, identifying early risk factors for the devel-
opment of frailty and implementing targeted interven-
tions are of paramount importance in effectively reducing
the incidence of frailty in patients undergoing MHD.

A risk prediction model is a statistical tool that enables
individuals to estimate the likelihood of a specific event
by combining a variety of predictors that have been
assigned appropriate weights [11]. This predictive model,
which combines multiple variables to estimate individual
risk, can help healthcare professionals screen for people
at high risk of frailty MHD patients [12]. In recent years,
Chinese scholars have made many efforts in the develop-
ment of risk prediction models for MHD patient frailty,
but most of the existing studies focus on the development
or validation of prediction models, and the quality and
applicability of the prediction models are still unknown,
which makes it difficult for healthcare professionals to
choose the appropriate prediction model to accurately
identify frailty in MHD patients and to adjust interven-
tions accordingly. In this study, by comprehensively col-
lecting and analysing existing prediction models for the
risk of debility in Chinese MHD patients, we systemati-
cally summarised, compared and analysed them in terms
of their basic features, construction methods, predictive
factors, model performance and method quality. It aims
to provide reference for clinical healthcare professionals
to select appropriate frailty risk prediction models for

Page 2 of 10

MHD patients, and to contribute to the optimisation or
development of high-quality risk prediction models for
subsequent studies.

Materials and methods

Literature search approach

Following the PRISMA 2020 guidelines [13], we system-
atically searched five English databases (PubMed, Web of
Science, Cochrane Library, CINAHL, and Embase) and
four Chinese databases (CNKI, Wanfang, VIP, and CBM).
The search period extended from inception to April 30,
2024. We employed English keywords, including: “renal
dialysis OR hemodialysis* OR extracorporeal dialyses*
OR blood dialysis OR hemodiafiltration OR MHD” AND
“frailty OR frail* OR weakness OR debility* OR asthenia
OR hyposthenia OR fragile*” AND “prediction model OR
prediction tool OR prognostic model OR risk prediction
OR risk assessment OR risk score OR partin table* OR
Nomograms OR partin nomogram*’” while the Chinese
databases were searched using translated versions of the
same keywords. Additional relevant studies were identi-
fied through the reference lists of included studies.

Inclusion and exclusion criteria
Inclusion Criteria: (1) Studies published in peer-reviewed
journals in English or Chinese; (2) The study popula-
tion was Chinese maintenance hemodialysis who were
18 years of age or older; (3) The research content is the
construction and/or verification of a frailty risk predic-
tion model; (4) The study design was either a case-control
study, cross-sectional study, or cohort study.

Exclusion Criteria: (1)<2 predictors; (2) Studies for
which the full text could not be obtained; (3) Inability to
obtain complete data from the original article.

Literature screening and data extraction

The literature screening, data extraction, and cross-
checking for this study were conducted independently by
two researchers trained in systematic evaluation method-
ology. In the event of a disagreement, the intervention of
a third party was required to make a ruling. The specific
steps for literature screening are as follows: First, all liter-
ature retrieved using EndNote 20 software was reviewed
to eliminate duplicates. Next, the titles and abstracts of
the literature were read to exclude any studies not related
to the research topic. Finally, a thorough rescreening was
conducted through full-text reading. The two research-
ers utilized a standardized form developed in accor-
dance with the Critical Appraisal and Data Extraction
for Systematic Reviews of Prediction Modelling Studies
(CHARMS) [14] for data extraction and quality assess-
ment of prediction modeling studies.
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Quality assessment

The risk of bias and applicability of the included stud-
ies were independently evaluated by two investigators
using the Prediction Model Risk of Bias Assessment
Tool (PROBAST) [15]. The risk of bias evaluation of
the included studies was conducted across four aspects:
study population, predictors, outcomes, and analyses.
Additionally, the suitability evaluation of the included
studies was performed in three aspects: study population,
predictors, and outcomes.

Results

Study selection

An initial search of 304 documents based on the pro-
posed search strategy resulted in 240 documents
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remaining after verification using EndNote 20 software.
After two rounds of meticulous screening, 10 Chinese-
language articles [16—25] were ultimately selected for
research and analysis. The specific steps and processes
involved in the literature screening are detailed in Fig. 1.

Study characteristics
All ten included studies were published within the last
three years, and all were cross-sectional studies. The fun-
damental characteristics of the included literature are
presented in Table 1.

The ten studies included a total of twelve prediction
models, of which three [17, 20, 23] were model develop-
ment studies, and seven [16, 18, 19, 21, 22, 24, 25] were
both model development and validation studies. The

Identification of studies via databases and registers }
Records identified from the
following databases(n=304):

CNKI (n=24)
S Wanfang (n=40) > Records removed before screening:
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Records screened Not prediction mode study(n=182)
(n=240) ’ Not maintenance haemodialysis patients(n = 31)
Type of study does not match(n = 7)
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e
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Fig. 1 Literature screening process
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Table 1 Overview of basic data of the included studies
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Study Location Study design Participants Data source Main outcome

Jiang SX 2022 [16] China Cross-sectional studies MHD Haemodialysis unit FP
of a hospital

LiKJ 2022 [17] China Cross-sectional studies MHD Haemodialysis unit FRAIL
of a hospital

Chen D 2023 [18] China Cross-sectional studies MHD Haemodialysis units FP
of 2 hospitals

Zhuang JH 2023 [19] China Cross-sectional studies MHD Haemodialysis unit FRAIL
of a hospital

Jiang'Y 2023 [20] China Cross-sectional studies MHD Haemodialysis unit FRAIL
of a hospital

Ying JP 2023 [21] China Cross-sectional studies MHD Haemodialysis unit FP
of a hospital

Yang L 2023 [22] China Cross-sectional studies MHD Haemodialysis unit FRAIL
of a hospital

Qing W 2024 [23] China Cross-sectional studies MHD Nephrology department FP
of a hospital

Wang DD 2024 [24] China Cross-sectional studies MHD Haemodialysis units FP
of 2 hospitals

Xiao ZQ 2024 [25] China Cross-sectional studies MHD Haemodialysis unit FP
of a hospital

MHD: Maintenance haemodialysis; FP: Frailty Phenotype; FRAIL: FRAIL Scale

number of candidate predictors for each model ranged
from 16 to 37, while the sample size varied from 145 to
876. Regarding the model-building methods, ten mod-
els utilized logistic regression, one [24] model employed
a decision tree, and one [24] model applied the random
forest algorithm. The details of the model building are
presented in Table 2.

The area under the curve (AUC) exceeded 0.7 in ten
studies. Four of these studies [16, 18, 22, 23] provided
calibration assessments through both calibration plots
and goodness-of-fit tests. The models utilized between
four and eight independent predictors. The predictor
variables that were most commonly identified in these
models included age, nutritional status, multimorbidity,
gender, and depression.

Models validation

Among the included studies, four [21, 22, 24, 25] con-
ducted only internal validation, two [16, 19] performed
only external validation, and only one [18] utilized a com-
bination of both internal and external validation to assess
the model.

Results of quality assessment

In evaluating the risk of bias, all ten included studies
were assessed to be at high risk, particularly in the area
of analysis. Conversely, the applicability evaluation indi-
cated that all ten documents exhibited a low risk of appli-
cability. The specific evaluation results are presented in
Table 3. In the participant domain, two studies [19, 25]
were rated as high risk. Both studies collected informa-
tion using retrospective research methods, which may

have introduced a significant risk of bias during the
model construction and validation processes. In the pre-
diction domain, two studies [19, 25] could not determine
whether the predictors were assessed when the outcome
data were unavailable, resulting in an unclear risk of bias
in this area. In the outcome domain, all ten studies were
rated as having a low risk of bias. The number of events
per variable (EPV) was less than 20 in all ten studies,
and no further adjustments were made to the param-
eters. Continuous variables in nine studies [16, 18-25]
were converted into categorical variables during the data
analysis process. Candidate predictors in nine studies
[16, 17, 19-25] were identified through one-way analyses.
Additionally, nine studies [16, 17, 19-25] did not provide
information regarding missing data, while one study [18]
opted to remove the missing data entirely. Regarding
model performance assessment, one study [24] did not
report the model’s calibration, and the evaluation met-
rics provided were incomplete. In terms of model vali-
dation, three studies [17, 20, 23] did not conduct model
validation.

Discussion

Applicability and risk of bias analyses of frailty risk
prediction models in patients with MHD

Models developed to predict frailty in patients undergo-
ing maintenance hemodialysis demonstrate a substantial
overall risk of bias. Despite the increase in the number
of studies conducted in China in recent years on predic-
tive modeling of frailty risk in maintenance hemodialysis
patients, the overall quality of these studies still requires
improvement. In the bias risk assessment, all included
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Table 3 PROBAST results of the included studies. (n=10)

Study ROB Applicability Overall

Participants Predictors  Outcome  Analysis Pre-  Predictors Predictors ROB Applicability

dic-
tors

Jiang SX 2022 [16] + + + - + + + R +

Li KJ 2022 [17] + + + - + + + - +

Chen D 2023 [18] + + + - + + + - +

Zhuang JH 2023 [19] - ? + - + + + - +

Jiang 'Y 2023 [20] + + + - + + + - +

Ying JP 2023 [21] + + + - + + + R +

Yang L 2023 [22] + + + - + + + - +

Qing W 2024 [23] + + + - + + + - +

Wang DD 2024 [24] + + + - + + + - +

Xiao 7Q 2024 [25] + ? + - + + + - +

PROBAST: Prediction model Risk Of Bias Assessment Tool; ROB: risk of bias; “+": lowROB/low concern regarding applicability; “-": high ROB/high concern regarding

application; “?": indicates unclear ROB/unclear concern regarding applicability

studies were assessed as having a high risk for five spe-
cific reasons.

Firstly, the number of outcome events is insufficient.
According to PROBAST [15], the sample size for model
development studies should be determined based on the
number of events per variable (EPV). When the EPV
is 220, the likelihood of model overfitting decreases,
thereby reducing the associated risk. In the literature
included in this study, all studies reported an EPV <20,
resulting in models that are susceptible to overfitting, as
well as exhibiting poor stability and reliability. Addition-
ally, two model validation studies [19, 25] included in this
research had fewer than 100 outcome events, which may
further contribute to bias. Therefore, for future model
development, it is recommended to ensure an adequate
sample size through multicenter studies.

Secondly, continuous variables were not handled
rationally. Specifically, nine studies [16, 18—-25] opted to
convert continuous variables into categorical variables
during their analyses. Transforming continuous variables
into =2 multicategorical variables when constructing a
risk prediction model can result in the loss of important
information and a reduction in the model’s predictive
accuracy [26]. Future researchers are advised to incorpo-
rate numerical variables into the model using their origi-
nal values. If continuous variables need to be categorized,
clear grouping criteria should be set first to prevent over-
fitting caused by arbitrary conversions during the analy-
sis phase. If necessary, adjustments can be made through
internal validation and recalibration of regression coeffi-
cients [27].

Thirdly, the handling and reporting of missing data are
inadequate. A simplistic approach to managing miss-
ing data during the research process can result in issues
such as an insufficient dataset for modeling and the loss
of valuable information. In this study, nine studies [16,
17, 19-25] failed to report information regarding missing

data, while one study [18] opted to remove the missing
data entirely. Future researchers should adopt appropri-
ate methods for handling missing data, such as multiple
imputation and case-by-case deletion [15], and ensure
that these methods are transparently reported in their
studies.

Fourthly, predictors were screened using one-way fac-
tor analysis. In this study, nine studies [16, 17, 19-25]
initially identified variables significantly associated with
frailty through one-way factor analysis and subsequently
employed these variables in further regression model
analyses. However, this approach does not fully account
for the interactions between variables and their intrin-
sic relationships, which may introduce bias due to the
omission of key independent variables. Future research-
ers should comprehensively consider the existing clinical
knowledge, as well as the reliability, consistency, applica-
bility, accessibility, and cost of measuring predictors [28].

Fifthly, there is a lack of assessment regarding model
performance. To thoroughly evaluate the predictive per-
formance of a model, researchers must accurately assess
both calibration (using the Hosmer-Lemeshow test and
calibration plots) and discrimination (measured by the
area under the curve, AUC). However, in this study, one
study [24] did not report the model’s calibration degree.
This omission may hinder a comprehensive evaluation
of the accuracy and reliability of the model’s predicted
probabilities, which could subsequently impact further
optimization efforts for the model.

Sixthly, inappropriate model validation. Three of the
included studies [17, 20, 23] did not perform model val-
idation, which may lead to optimism bias in the assess-
ment of model performance. Internal and external
validation of models is a crucial step to assess model sta-
bility and applicability. However, the current emphasis
on model development rather than validation in clinical
studies is a prevalent issue, with most studies remaining
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at the modeling stage. As a result, only a limited num-
ber of models are available for clinical practice [29].
Future researchers should consider conducting internal
and external validation of existing unvalidated models.
Additionally, the Transparency Reporting Interpretation
Statement (TRIPOD) [30] should be thoroughly reviewed
and strictly adhered to in order to ensure the transpar-
ency and reliability of the model development, updating,
and validation processes.

Predictor analysis of models for predicting the risk of
frailty in patients with MHD

Risk factors for frailty in patients with MHD vary and
exhibit commonalities across studies due to differences
in assessment tools for debility, included predictors,
and data sources. The five most common predictors of
debility development in MHD patients identified in this
study are age, nutritional status, multimorbidity, gender,
and depression. Yang [22] found that the occurrence of
frailty in MHD patients aged =60 years was 3.460 times
higher than those aged <60 years, and advanced age was
an independent risk factor for the occurrence of debil-
ity in MHD patients, which is similar to the findings of
Takeuchi [31]. As the duration of dialysis increases,
patients with end-stage renal disease undergo a series of
complex physiological changes, such as cellular senes-
cence, telomere attrition, mitochondrial dysfunction, and
heightened free radical production [32]. These alterations
may contribute to sarcopenia, vascular dysfunction, and
progressive organ damage, thereby elevating the risk of
frailty in these patients [33]. It is suggested that health-
care professionals should pay more attention to the frailty
conditions of elderly patients before and after daily dialy-
sis treatment, implement personalised health education
to help patients understand the risk factors and preven-
tive measures of frailty, and improve their self-manage-
ment ability. A study noted that both serum albumin and
NRS2002 score were independent risk factors for the
development of debility in patients with MHD [19], and
both reflected the nutritional status of the patients, in
agreement with the findings of Johansen [34]. Inadequate
energy intake during dialysis treatment, resulting from
decreased appetite and dietary restrictions, along with
the loss of essential nutrients such as proteins, water-sol-
uble vitamins, and red blood cells, predisposes patients
to malnutrition and significantly heightens the risk of
frailty. Healthcare professionals are advised to strengthen
nutritional assessment of MHD patients, guide them to
rational protein and energy intake, and provide person-
alised nutritional support through multidisciplinary col-
laboration in order to improve the nutritional status of
the organism and reduce the risk of frailty. The presence
of multiple chronic diseases can lead to a reduction in
the homeostatic reserves of a patient’s body, diminishing

Page 8 of 10

their resistance to external stressors and consequently
accelerating the onset of frailty [35]. Therefore, health-
care professionals should strengthen the management
of patients’ chronic diseases and rationalise the use of
medication, as well as encourage patients to actively
participate in self-management in order to enhance the
body’s homeostatic reserve and reduce the risk of frailty.
Women are more susceptible to frailty, which may be
attributed to factors such as generally lower body weight,
reduced muscle strength and mass, and increased lon-
gevity [36]. It is suggested that healthcare professionals
should focus on female MHD patients in hospitals as well
as in the community, and that regular frailty screening
can be carried out to determine whether frailty is occur-
ring in MHD patients and to intervene as early as pos-
sible to avoid aggravation of the degree of frailty. Studies
have indicated that the prevalence of frailty among
patients with depression can be as high as 40.4% [37].
These individuals often lack adequate psychological and
social motivation, which may result in a decreased inter-
est in physical and social activities. Consequently, this
increases their risk of physical decline and makes them
more susceptible to frailty [38]. Therefore, while treat-
ing patients with somatic diseases, healthcare profes-
sionals should enhance psychological interventions. This
includes providing emotional support and mental health
care, as well as teaching patients emotional regulation
techniques such as deep breathing, relaxation training,
and positive thinking meditation. In summary, these fac-
tors are significant predictors of frailty in MHD patients,
and clinical staff should improve the assessment and pre-
vention of these key variables.

In addition, we found that while multimorbidity is a
common predictor, the Charlson Comorbidity Index
(CCI) is typically employed as one of the predictors in
existing studies. However, the specific impact of vari-
ous types of comorbidity on the risk of debilitation has
not been thoroughly examined. A study by Takeuchi [31]
demonstrated that the risk of frailty in MHD patients
with concurrent diabetes was 2.765 times higher than
that in patients without diabetes. Additionally, a study
by Kutner [39] identified peripheral vascular disease and
cardiac disease as independent risk factors for frailty in
MHD patients. This indicates that the complexity of
comorbidities must be thoroughly considered in risk
prediction models to enhance their predictive accu-
racy. In this context, we recommend that future stud-
ies further investigate the specific effects of various
types of comorbidities on the risk of frailty and take into
account the heterogeneity of these factors during model
development.
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Future trends and challenges in frailty risk prediction
modeling for patients with MHD

Models for predicting the risk of frailty in patients with
MHD have developed rapidly in recent years, despite
their relatively late inception. Overall, existing mod-
els demonstrate good differentiation and calibration.
However, these models encounter several challenges in
clinical application. First, there are methodological limi-
tations in model validation and calibration. Most studies
lacked external validation, which restricts the applicabil-
ity of the model to a broader range of populations. Addi-
tionally, some studies evaluated the model’s calibration
using calibration plots and Hosmer-Lemeshow (H-L)
tests that were not adjusted for specific population char-
acteristics, potentially impacting the model’s predictive
accuracy across diverse populations. Therefore, in the
future, researchers should enhance the number of exter-
nal validation studies through multicenter collabora-
tions, gather data from diverse regions and populations,
emphasize the implementation of a dynamic calibration
strategy tailored to population characteristics, and regu-
larly monitor the model’s performance. Additionally, they
should update the model based on new data to ensure its
accuracy and relevance. Second, the predictors used in
each risk prediction model varied, which may be attrib-
uted to the diversity of alternative predictors included
in different models and the heterogeneity of the study
populations. To optimize the selection of predictors in
these models, it is recommended that future research-
ers identify alternative predictors for inclusion through
systematic literature reviews, statistical analyses, and by
integrating medical knowledge with expert experience.
Additionally, enhancing the representativeness of the
models can be achieved by conducting multicenter stud-
ies. Third, this study found that the risk of competing
events related to death has not been explicitly addressed
in the construction of current risk prediction models,
which may result in decreased predictive performance.
To enhance the accuracy and applicability of these mod-
els, future research should explicitly incorporate the risk
of competing events by utilizing appropriate statistical
methods, such as competing risks modeling. Finally, sev-
eral frailty assessment tools are currently widely utilized
in clinical practice [40, 41]. However, there is no estab-
lished ‘gold standard’ for these tools due to variations in
population heterogeneity and clinical status. It is recom-
mended that a common standard for frailty assessment
be established in the future. Such a standard would be
practically significant for enhancing the consistency of
clinical evaluations and providing a uniform benchmark
for the development, validation, application, and inter-
pretation of predictive models. This would ensure that
comparisons between different models are both reliable
and reproducible.
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Limitations

In this systematic evaluation, we conducted a compre-
hensive analysis of predictive models for assessing the
risk of frailty in patients with MHD. However, it is impor-
tant to acknowledge several limitations that may have
influenced our conclusions: (1) The absence of a search
for grey literature may have resulted in the exclusion of
certain studies, thereby increasing the risk of publica-
tion bias. (2) Variations in predictor selection and clas-
sification criteria among the models prevented us from
quantitatively analyzing the predictors in the included
literature. (3) All risk prediction models included in this
study were developed based on limited data from the Chi-
nese population, which may have introduced geographic
bias and restricted our understanding of the differences
in frailty risk prediction among MHD patients from vari-
ous countries and regions. Consequently, our conclusions
may not fully represent diverse populations worldwide.
Despite these limitations, our systematic review offers a
valuable reference for understanding the current land-
scape of frailty risk prediction models for MHD patients
and suggests directions for future research.

Conclusion

A total of ten studies on risk prediction models were
included in this analysis, which systematically evaluated
the characteristics of the models concerning the study
population, predictors, outcome indicators, and areas
of analysis. The results indicated that while most exist-
ing risk prediction models demonstrated good predic-
tive performance, they also exhibited some risk of bias.
Future researchers are encouraged to refer to the PRO-
BAST guidelines and adhere to the multivariate predic-
tion model reporting standards to minimize bias and
ensure scientific validity and rigor in the model devel-
opment process. Additionally, prospective cohort stud-
ies with multi-center involvement and large sample sizes
are recommended to enhance the reliability and gener-
alizability of the models. Future investigations may also
consider employing advanced algorithms such as support
vector machines, neural networks, and decision trees to
optimize model construction and conduct comparative
analyses, with the goal of identifying the most suitable
prediction models for clinical practice. Furthermore, it is
advisable to integrate these predictive models with elec-
tronic medical record systems to facilitate their usability
by clinical staff.
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