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Abstract 

Background  Creatinine-based estimated glomerular filtration rate (eGFR) equations are widely used in clinical prac‑
tice but exhibit inherent limitations. On the other side, measuring GFR is time consuming and not available in routine 
clinical practice. We developed and validated machine learning models to assess the trustworthiness (i.e. the ability 
of equations to estimate measured GFR (mGFR) within 10%, 20% or 30%) of the European Kidney Function Consor‑
tium (EKFC) equation at the individual level.

Methods  This observational study used data from European and US cohorts, comprising 22,343 participants of all 
ages with available mGFR results. Four machine learning and two traditional logistic regression models were trained 
on a cohort of 9,202 participants to predict the likelihood of the EKFC creatinine-derived eGFR falling within 30% 
(p30), 20% (p20) or 10% (p10) of the mGFR value. The algorithms were internally and then externally validated 
on cohorts of respectively 3,034 and 10,107 participants. The predictors included in the models were creatinine, age, 
sex, height, weight, and EKFC.

Results  The random forest model was the most robust model. In the external validation cohort, the model achieved 
an area under the curve of 0.675 (95%CI 0.660;0.690) and an accuracy of 0.716 (95%CI 0.707;0.725) for the P30 
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Background
The evaluation of kidney function through glomerular 
filtration rate (GFR) stands as a cornerstone of routine 
care across numerous clinical cases. The GFR result is 
necessary to adjust the dose of drugs cleared by the kid-
ney. It defines and assesses the severity of chronic kidney 
disease (CKD). Additionally, it serves as a guiding metric 
for nephrologists in determining the need for renal trans-
plantation or dialysis [1].

Measured GFR (mGFR) using an exogenous marker 
such as iohexol is the gold standard for evaluating GFR. 
However, these techniques are more time consuming and 
more expensive than using biomarkers. Moreover, these 
techniques are not universally available.

Alternatively, estimated GFR (eGFR) is commonly used 
in clinical practice, derived from equations incorporating 
a single measurement of serum creatinine. Over the last 
three decades, various equations have been developed. 
The European Kidney Function Consortium (EKFC) 
equation was shown to be one of the most accurate 
for European and US populations [2, 3]. Nevertheless, 
no single equation offers a perfect estimation of GFR, 
often displaying a systematic bias and more importantly, 
imprecision at the individual level. It is noteworthy that 
a key benchmark for the validation of eGFR equations is 
achieving a high accuracy within 30% (P30). P30 indicates 
the percentage of eGFR results within 30% of mGFR.

Serum creatinine concentration depends on muscle 
mass, and accordingly equations for estimation of GFR 
incorporate age and sex. However, these variables may 
not consistently capture the impact of all non-GFR deter-
minants of creatinine. This is reflected by the fact that 
the best equations achieve a P30 of 80 to 85%, meaning 
that in more than one patient out of ten, creatinine-based 
equations are inaccurate to estimate GFR [4]. Conse-
quently, physicians are frequently faced with the ques-
tion of whether to rely on eGFR results or consider direct 
GFR measurement when interpreting patient results.

Artificial intelligence (AI) represents a transformative 
paradigm in healthcare, offering personalized solutions 
to clinical challenges, in contrast to traditional evidence 
derived from population-level trials [5].

We aimed at developing a machine learning model 
to aid clinicians in assessing the trustworthiness of 
eGFR obtained by the EKFC creatinine-based equa-
tion, individualizing this estimate according to patients’ 
characteristics.

Methods
Study design and setting
We used data from cohorts of European participants 
of all ages and US adult participants. Details about 
the cohorts have been published previously and are 
detailed in supplementary material (Supplementary 
Table S1A, Supplementary Table S1B, Supplemen-
tary Table S1C) [2, 3]. There was no patient or public 
involvement in the design or drafting of this study. All 
data were anonymized from the source cohorts. the 
original study was approved by the Ethical Board at 
Lund University (Sweden) with amendment approved 
by the Swedish Ethical Review Agency. Procedures 
involving humans and data were realized in agreement 
with the ethical principles for medical research involv-
ing human subjects established in the World Medical 
Association’s Declaration of Helsinki. Written consent 
had been obtained from the participants of MDRD, 
ALTOLD, CRISP, GENOA/ECAC and PERL studies. A 
waiver of consent was obtained from the Mayo Clinic 
IRB to study the patients from the Mayo Clinic Renal 
Studies Unit database due to the retrospective nature of 
these clinical data.

Study population
European data were those used for the development, 
internal and external validation of the EKFC creatinine-
based equation [2]. US data were extracted among those 
used to assess the performance of the EKFC creatinine-
based equation in the US population, notably data avail-
able from the National Institute of Diabetes and Digestive 
and Kidney Diseases [3]. Height and weight were not 
available from four of the US cohorts, and therefore these 
cohorts were not included in the present work.

criterion. Sensitivity was 0.756 (95%CI 0.747;0.765) and specificity was 0.485 (95%CI 0.460; 0.511) at the 80% probability 
level that EKFC falls within 30% of mGFR. At the population level, the PPV of this machine learning model was 89.5%, 
higher than the EKFC P30 of 85.2%. A free web-application was developed to allow the physician to assess the trust‑
worthiness of EKFC at the individual level.

Conclusions  A strategy using machine learning model marginally improves the trustworthiness of GFR estimation 
at the population level. An additional value of this approach lies in its ability to provide assessments at the individual 
level.

Keywords  Glomerular filtration rate, Chronic kidney disease, Creatinine, Machine learning, Random forest
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Data set splitting
The population was separated into a training and an 
internal validation datasets from the same cohorts, and 
an external validation dataset from different cohorts.

The training cohort consisted of 9,202 participants: 
1245 from the USA, 500 from Germany, 3,096 from 
France, 3,158 from Sweden, and 1203 from Norway. 
There were 3,034 participants in the internal valida-
tion cohort: 1,001 from France, 157 from Germany, 424 
from Norway, 1,037 from Sweden and 415 from the 
USA. The external validation cohort encompass 10,107 
participants: 442 from Belgium, 2,572 from France, 447 
from Netherland, 3,281 from Sweden, 394 from the UK 
and 2,971 from the USA. It should be pointed out that 
none of the patients in the external validation dataset 
were selected from the cohorts used for the development 
of the EKFC equation. The distribution of the cohorts 
is detailed in Supplementary Material (Supplementary 
Table S1).

Covariates and outcomes
We used the EKFC creatinine-derived eGFR, which is 
calculated based on a normalized serum creatinine value. 
This value is obtained by dividing the serum creatinine 
by the Q-value, which represents the sex- and age-spe-
cific median creatinine value in healthy individuals [2]. 
Race-free Q-values were used for the participants from 
the US cohorts [3]. Details of the computation of EKFC 
are presented in supplementary material (Supplemen-
tary Methods S1). The measured glomerular filtration 
rate (GFR) value was determined for each participant 
utilizing plasma or urinary clearance of an exogenous 
filtration marker such as iohexol, inulin, 51Cr-EDTA, or 
iothalamate.

The biomarker used for GFR estimation was serum cre-
atinine, measured with assays traceable to the gold stand-
ard method of isotope dilution mass spectrometry. Age, 
sex, height, and weight were the variables available. In the 
European cohorts, all subjects were considered as White 
as race is frequently unavailable. Because the sample size 
of both Black Americans and Black Europeans was low, 
we decided not to include them in this work.

For each participant, the probability of GFR assess-
ment falling within an acceptable margin of error was 
computed. Three margins of errors were assessed: 30%, 
20% and 10% respectively referred to as P30 or p30, P20 
or p20 and P10 or p10. For instance, if the relative dif-
ference between the mGFR and the EKFC creatinine 
based eGFR was less than 30% of the mGFR, then EKFC 
would be considered the recommended GFR assessment 
method within the acceptable margin of error. In order to 
clarify the distinction between the proportion of patients 

meeting the margin at the population level and the prob-
ability of eGFR being within 30% at the individual level, 
we used different notations: “P30” referring to the pop-
ulation-level measure and “p30” referring to the indi-
vidual level. Main analysis focused on P30 (p30), but P20 
(p20) and P10 (p10) criteria were explored in secondary 
analyzes.

Missing data
Globally there were 248 subjects with missing data, con-
cerning only weight and height. This corresponded to 
fewer than 1% of missing data, and therefore we chose to 
exclude the corresponding 248 persons and to perform 
complete case analysis.

Statistical analysis
Continuous variables were described using mean and 
standard deviation (SD) or median and interquartile 
range (IQR), according to their distribution. Reporting of 
the machine learning models was realized according to 
the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) 
[6] statement (Supplementary Methods S2).

Machine learning model development and validation
We employed supervised machine learning techniques 
to train models aimed at predicting the likelihood of the 
EKFC-derived eGFR falling within p30, p20 and p10. The 
models developed were random forest, extreme gradi-
ent boosting, k-nearest neighbors, and support vector 
machine. The features included in the models were age, 
sex, height, weight, creatinine, and EKFC creatinine 
eGFR. Features were scaled and centered during preproc-
essing. For each model, we performed a tenfold inner 
cross-validation repeated 3 times in the training data-
set, and the hyperparameters were optimized with a grid 
search algorithm (Supplementary Method S3).

Traditional statistical prediction models
We compared the performances of the four machine 
learning models with those of a traditional logistic 
regression model. Some of the features included in the 
machine learning models presented multicollinearity, as 
attested by the evaluation of the variance inflation factors 
(VIF) in a “full feature” model. In order to make fair com-
parisons, we first computed a logistic regression model 
using all the features included in the machine learning 
algorithms, called logistic regression “inflated” model. 
We then built a second logistic regression model without 
EKFC, called “reduced” logistic regression model. VIF 
values are shown in supplementary material (Supplemen-
tary Table 2).
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Performances of the models
The performances of the models were evaluated in the 
internal validation dataset in terms of area under the 
curve (AUC), accuracy, sensitivity, specificity, positive 
predictive value (PPV) and negative predictive value 
(NPV). For each model, the metrics were assessed with 
the threshold probability optimizing the sensitivity–
specificity balance, meaning that the recommended 
method predicted by a model was EKFC if the probabil-
ity that the EKFC-based creatinine eGFR fell within p30 
exceeded the threshold. The choice of the best perform-
ing model was made considering the metrics obtained 
on the internal validation cohort, and with a priority 
given to AUC. AUC values were compared using the 
Delong’s test [7]. The p-values were adjusted using a 
Bonferroni correction to address concern related to 
multiple comparisons.

Features importance
In order to get an insight into the mechanisms driving the 
machine learning models, features importance was com-
puted for the best performing model. Features impor-
tance were computed by measuring the average decrease 
in impurity contributed by each variable, calculated 
using the Gini impurity. In a set of items with N possible 
classes, the Gini impurity is a measure used to determine 
how often a randomly chosen item would be incorrectly 
labeled if it was randomly labeled. For example, the Gini 
impurity of a set of elements that all belong to the same 
class, i.e. perfectly pure, is zero. Its maximum value is 0.5 
for a set of elements of two classes equally distributed [8].

All analyses were performed using R (version 4.2.0; 
R Foundation for Statistical Computing, Vienna, Aus-
tria). Machine learning models were computed with the 
CRAN package caret.

Results
The study encompassed data from 22,343 participants, 
with 4,631 hailing from the USA and 17,712 from Europe. 
The participants ranged in age from 2 to 97  years, with 
a median age of 53  years (IQR 23–65), and 10,709 
(47.9%) participants were female. Median serum cre-
atinine was 76.6  µmol/l (IQR 61.0–106.2), while the 
median value for EKFC creatinine eGFR and mGFR were 
82  ml/min/1,73m2 (IQR 57–97), and 80 (IQR 54–99) 
respectively.

Patient’s characteristics categorized by dataset are 
detailed in Table 1. Notably, patients were younger in the 
training dataset, with higher height and heavier weight 
than in the external validation dataset. Creatinine mean 
value was lower, and accordingly eGFR and mGFR were 

higher in the training and in the internal validation data-
sets than in the external validation dataset.

Outcome evaluation
EKFC creatinine eGFR was correctly predicted as within 
30% of the actual mGFR value (P30) in 19,217 (86.01%, 
95% confidence interval (CI) 85.55 to 86.46) partici-
pants in the whole population. Similar values of P30 were 
observed in the training dataset: 7,972 (86.63%, 95% con-
fidence interval 85.92 to 87.31), in the internal validation 
dataset: 86.88%, 95%CI 85.63 to 88.04, and in the external 
validation dataset: 85.18%, 95%CI 84.47 to 85.86.

Fifteen thousand and 968 (71.47%, 95%CI 70.87 to 
72.06) subjects had an EKFC creatinine eGFR within 
20% of the mGFR (P20 criteria). Finally, EKFC creatinine 
eGFR was within 10% of mGFR for 9,454 (42.31%, 95%CI 
41.67 to 42.96) participants.

Internal validation
P30
The receiver operating characteristics (ROC) curves 
of the six models developed are presented in Fig.  1A. 
Random forest and extreme gradient boosting mod-
els showed the highest AUC (respectively 0.695, 95%CI 
0.667;0.724 and 0.668, 95%CI 0.639;0.698), followed 
by the k-nearest neighbor model (AUC 0.644, 95%CI 
0.616;0.672). AUCs of the full variables logistic regression 
model and the reduced logistic regression model were 
respectively 0.615, 95%CI 0.584;0.645, and 0.623, 95%CI 
0.593;0.653), both superior to support vector machines 
model (AUC 0.583, 95%CI 0.551;0.614) (Fig.  1B). The 
AUC of the Random forest model was significantly supe-
rior to AUC of the five others models. P-value for the 
difference in random forest’s and extreme gradient boost-
ing’s models was 0.02 according to DeLong’s test. The 
accuracy of the random forest model was 0.770, (95%CI 
0.754; 0.784) with a sensitivity of 0.819 (95%CI 0.804; 
0.834) and a specificity of 0.442 (95%CI 0.393; 0.493). The 
full logistic model had the highest accuracy: 0.868 (95%CI 
0.856; 0.880) at the price of an imbalance between sen-
sitivity of 0.999 (95%CI 0.997; 1) and specificity of 0.003 
(95%CI 0; 0.014). Metrics of the six algorithms for the 
P30 criteria on the internal validation dataset are shown 
in Fig. 1B.

P20 and P10
Regarding the P20 criterion, the random forest achieved 
the highest AUC, at 0.655 (95%CI 0.634; 0.677). How-
ever, this was not significantly different from the AUC of 
the extreme gradient boosting model, which was 0.644 
(95%CI 0.622; 0.666) (p = 0.73 according to DeLong’s 
test).
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Table 1  Patients’ characteristics in the different datasets

eGFR estimated glomerular filtration rate, mGFR measured glomerular filtration rate, IQR Interquartile range

Training (N = 9202) Internal validation (N = 3034) External validation 
(N = 10107)

Overall (N = 22343)

Country
  France 3096 (33.6%) 1001 (33.0%) 2572 (25.4%) 6669 (29.8%)

  Germany 500 (5.4%) 157 (5.2%) 0 657 (2.9%)

  Norway 1203 (13.1%) 424 (14.0%) 0 1627 (7.3%)

  Sweden 3158 (34.3%) 1037 (34.2%) 3281 (32.5%) 7476 (33.5%)

  USA 1245 (13.5%) 415 (13.7%) 2971 (29.4%) 4631 (20.7%)

  Belgium 0 0 442 (4.4%) 442 (2.0%)

  Netherland 0 0 447 (4.4%) 447 (2.0%)

  UK 0 0 394 (3.9%) 394 (1.8%)

Age
  Median [IQR] 50.9 [18.7, 64.2] 50.8 [18.5.0, 63.6] 55.0 [39.0, 66.0] 53.0 [23.0, 65.0]

Sex
  Female 4257 (46.3%) 1406 (46.3%) 5046 (49.9%) 10,709 (47.9%)

  Male 4945 (53.7%) 1628 (53.7%) 5061 (50.1%) 11,634 (52.1%)

Weight (kg)
  Median [IQR] 69.3 [54.8, 83.0] 69.0 [55.0, 83.0] 73 [60.0, 85.5] 71 [57.5, 84.1]

Height (cm)
  Median [IQR] 167 [158.0, 175.0] 167.0 [158.1, 175.5] 168 [160.0, 175.0] 167.4 [159.7, 175.0]

Creatinine (µmol/l)
  Median [IQR] 74.0 [59.0, 99.0] 73.7 [59.2, 97.6] 79.6 [62.8, 118.0] 76.6 [61.0, 107.0]

EKFC eGFR (ml/min/1.73m2)
  Median [IQR] 84.5 [61.7, 99.1] 84.9 [63.7, 99.1] 77.7 [50.6, 94.3] 81.6 [57.0, 97.1]

mGFR (ml/min/1.73m2)
  Median [IQR] 82.9 [56.4, 101.6] 84.0 [46.3, 102.3] 76.4 [47.7, 96.0] 80.0 [54.0, 99.0]

Fig. 1  Performance of the six algorithms in internal validation for the P30 criteria. A Receiver Operating Curve for the 6 models. B Performance 
metrics for the 6 models. AUC: area under the curve; Acc: accuracy; Se: sensitivity; Sp: specificity; PPV: Predictive positive value; NPV: Negative 
predictive value; Logit: Logistic regression model; KNN: k-nearest neighbors; SVM: Support vector machine; XGB: extreme gradient boosting; RF: 
random forest.
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Considering the P10 criterion, the random forest 
model had the highest AUC (0.621, 95%CI 0.601;0.641), 
significantly superior to the extreme gradient boost-
ing which ranked second with an AUC of 0.569 (95%CI 
0.549; 0.590) (p < 0.001). The metrics’ performances of the 
models for the P20 and P10 criteria within the internal 
validation dataset are reported in supplementary mate-
rial (Supplementary Table S3).

Choice of the best performing model and external validation
Our aim was to answer a classification problem with a 
good ability to discriminate between two classes (EKFC-
based creatinine eGFR vs mGFR) so we prioritized the 
AUC to rank the performance of the models built, while 
also considering the other metrics. The results obtained 
on the P30 criteria were examined in priority.

P30
The random forest model was the best performing model 
according to the AUC and accuracy values; therefore, this 
model was used for the external validation.

Considering the P30 criteria, the AUC of the random 
forest model was 0.675 (95%CI 0.660;0.690). Its accu-
racy was 0.716, (95%CI 0.707; 0.725), with a sensitivity 
of 0.756 (95%CI 0.747;0.765) and a specificity of 0.485 
(95%CI 0.460; 0.511) at the 80% probability threshold. 
The metrics performance for the different criteria are 
shown in Fig. 2.

Figure 3 illustrates for the participants of the external 
validation dataset, the probability that EKFC eGFR is 
within 30% of mGFR according to the ‘trustworthiness’ 
prediction of the random forest model (Fig.  3). There 
were 8,609 (85.2%) of the EKFC predictions within 30% 
of mGFR in the external validation dataset. In 6,538 of 
these cases, the random forest model gave a probabil-
ity ≥ 80% that EKFC is within 30% of mGFR, thus con-
firming the trustworthiness of the predicted EKFC result. 
However, in 2071 of these 8,609 cases, the random forest 
model gave a probability < 80% that EKFC is within 30% 
of mGFR, thus incorrectly warning against the trustwor-
thiness of EKFC. On the other hand, there were 1,498 
(14.8%) cases with an EKFC prediction deviating more 
than 30% of mGFR. In 727 out of 1,498 of these cases the 
random forest model correctly warns against the use of 
EKFC as a trustworthy GFR assessment within p30, while 
the random forest model incorrectly gives a probabil-
ity > 80% in 771 out of 1,498 of these cases, thus indicat-
ing that the EKFC was dependable, while in fact, it was 
not.

P20 and P10
When tested on the external validation dataset, the ran-
dom forest trained with aim of predicting the p20 cri-
teria had an AUC of 0.661 (95%CI 0.649; 0.672) and an 
accuracy of 0.641 (95%CI 0.632; 0.650), with a sensitiv-
ity of 0.698 (95%CI 0.687; 0.709) and a specificity of 0.504 
(95%CI 0.486; 0.522).

Fig. 2  Performance of the random forest model in external validation for the P30, P20 and P10 criteria. The probability thresholds used to evaluate 
the model’s performance metrics were 0.80 for the P30 criteria, 0.65 for the P20 criteria, and 0.45 for the P10 criteria. AUC: area under the curve; Acc: 
accuracy; Se: sensitivity; Sp: specificity; PPV: Predictive positive value; NPV: Negative predictive value
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The model trained for the P10 criteria had an AUC of 
0.615 (95%CI 0.604; 0.626), an accuracy of 0.576 (95%CI 
0.566; 0.585), and a sensitivity of 0.506 (95%CI 0.491; 
0.521) with a specificity of 0.626 (95%CI 0.613; 0.638).

The numbers and probabilities of EKFC eGFR being 
within p20 or p10 of mGFR according the prediction of 
the random forest are shown in Supplementary material 
(Supplementary Figures S1 and S2).

Variable importance
EKFC equation was the most important features in 
the random forest model with P30 criteria. All features 
except sex were of similar importance in the model, 
according to the mean decrease in Gini impurity values, 
going from 363 for height to 454 for EKFC. The impor-
tance of the different features in the random forest mod-
els are shown in supplementary material (Supplementary 
figure S3).

Implementation in a web application
We implemented the random forest algorithm in a free 
web application (available at https://​trust​ekfce​gfr.​shiny​
apps.​io/​GFR_​shiny_​Lanot/). This app allows the user 
to evaluate the probability of EKFC creatinine eGFR 
being within p30, p20 or p10 for a given patient, know-
ing his age, sex, height, weight and serum creatinine. 

The 95%CI for the probabilities, calculated using a boot-
strap approach, are presented. As an illustration in ten 
patients, Table 2 displays the characteristics, mGFR val-
ues and the machine learning algorithm’s predictions for 
the likelihood of EKFC eGFR being within 30% of mGFR 
(Table  2). A screenshot of the application is shown in 
supplementary material (Supplementary figure S4).

Added‑value of a strategy including the machine learning 
algorithm for GFR assessment
When using EKFC-based creatinine equation in a given 
patient, the probability that the eGFR is within p30 is 
85.2% according to our results in the external validation 
cohort, in line with the figures previously described at a 
population level [2, 3].

Global assessment of GFR using our random for-
est algorithm is presented in Fig.  4. The first step is to 
assess the random forest prediction according to the sub-
ject’s characteristics. A threshold of 80% may be chosen 
by default. If the ‘trustworthiness’ probability of EKFC 
eGFR is inferior to the threshold, then a GFR measure-
ment should be performed, with a p30 of 100% (mGFR 
being the gold standard). In the other case, if the prob-
ability predicted by the random forest model is superior 
or equal to the threshold, then the p30 is the PPV of our 
model (i.e. the probability of EKFC eGFR being within 

Fig. 3  Probability that EKFC eGFR is within 30% of mGFR according to the random forest model. Each dot represents a participant from the external 
validation dataset. The probability threshold of 0.80 was selected to evaluate the model’s performance metrics. EKFC: European kidney function 
consortium formula for estimation of GFR; mGFR: measured glomerular filtration rate. P30: EKFC result within 30% of mGFR value. TP: true positive, 
meaning that the random forest model predicts accurately that EKFC is within P30, TN: true negative, meaning that the random forest model 
predicts accurately that EKFC is not within P30, FP: false positive, meaning that the random forest model falsely predicts that EKFC is within P30

https://trustekfcegfr.shinyapps.io/GFR_shiny_Lanot/
https://trustekfcegfr.shinyapps.io/GFR_shiny_Lanot/
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p30, known that the random forest model predicted an 
EKFC trustworthiness superior or equal to the thresh-
old), which is equal to 89.4% with a threshold of 80%. The 
global P30 of this strategy calculated on the external vali-
dation dataset is 92.4% for a threshold of 80%. Global P30 
with other threshold values are reported in Table 3, along 
with the proportion of GFR measurement which would 
be performed even though EKFC eGFR was within p30 
(called “a posteriori un-necessary mGFR”) (Table 3). The 
term “a posteriori un-necessary mGFR” describes the 
cases in which the random forest strategy would have led 
to a measurement of GFR while EKFC was indeed within 
30% of mGFR, in a clinical context where the clinician 
would target an assessment within this range.

Discussion
In this study, we focused on assessing the trustworthiness 
of estimated eGFR calculated using the EKFC creatinine 
equation. We utilized supervised machine learning tech-
niques to develop predictive models aimed at determin-
ing the likelihood of eGFR being within a predetermined 
acceptable margin of error compared to mGFR. Six algo-
rithms were trained on a cohort of 9,202 participants, 
and internally validated on cohorts of 3,034 subjects. The 
best performing model, namely random forest algorithm 
was externally validated on a dataset of 10,107 subjects. 

This random forest model was implemented in a free web 
application aimed at aiding clinicians in evaluating eGFR 
trustworthiness for individual patients.

Fig. 4  Use of the random forest algorithm for GFR assesment. Under this approach, if the probability of EKFC eGFR falling within 30% of mGFR 
is less than 80%, mGFR should be measured. The Global P30 metric is then calculated as the ratio of True Positives to the sum of True Negatives 
and False Negatives. For global P30 with different probability tresholds values, see Table 3. RF: random forest; PPV: positive predictive value; RF: 
random forest. EKFC: european kidney function consortium; P30EKFC/RF: Probability that EKFC eGFR is within P30 knowing that this probability 
is superior or equal to the decision treshold, according to the random forest model

Table 3  Global P30 with the random forest strategy to assess 
GFR, according to the chosen threshold

Threshold is the probability computed by the random forest model that is 
chosen as sufficient to use the EKFC equation (see Fig. 4). PPV is the positive 
predictive value (i.e. the proportion of individuals whose eGFR falls within 30% 
of mGFR, given that the random forest model predicted this outcome. Global 
P30 is the probability of GFR being within 30% of mGFR when the strategy 
presented in Fig. 4 is used. A posteriori un-necessary mGFR performed is the 
probability of performing mGFR in patients whose eGFR calculated with the 
EKFC equation was already within 30% of mGFR

BMI Body mass index, EKFC European Kidney function consortium, mGFR 
measured glomerular filtration rate, P30 Chance for estimated GFR to be within 
30% of mGFR value, F Female, M Male

Threshold PPV of the 
Random Forest 
model

Global P30 A posteriori 
un-necessary mGFR 
performed

50% 86.4% 86.8% 42.4% (120/283)

60% 86.9% 87.7% 59.0% (364/617)

70% 87.8% 89.4% 68.4% (921/1346)

75% 88.6% 88.5% 70.8% (1377/1945)

80% 89.5% 92.4% 74.0% (2071/2798)

85% 90.4% 94.1% 77.0% (3029/3933)

90% 91.6% 96.1% 79.6% (4320/5425)

95% 93.5% 98.4% 82.6% (6346/7687)
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Artificial intelligence and machine learning tools are 
steadily gaining prominence in healthcare, presenting 
opportunities to enhance clinicians’ diagnostic abili-
ties, early detection and preventive measures, prognos-
tic accuracy, and treatment strategies [9, 10] Yet it was 
pointed out that machine learning has been less used in 
research works in the field of nephrology than in other 
specialties [11]. Some authors have used artificial intelli-
gence models in works related to kidney function assess-
ment. Some of them have built models to estimate GFR 
comparing their performance with those of validated 
equations [12–15]. Others studies aimed at detecting or 
predicting CKD [16–18]. A systematic review gathered 
55 works using artificial intelligence algorithms to predict 
CKD [19].

To our knowledge, only one study was designed to 
develop a machine learning model for selecting the 
optimal GFR assessment among several modalities. 
In a monocentric Chinese study, data were collected 
from 518 subjects who underwent 99mTc-DTPA renal 
dynamic imaging to detect GFR. A decision tree model 
was trained to choose the most accurate equation from 
BIS-2, CKD-EPI with cystatin C, CKD-EPI with cre-
atinine and cystatin C, and Ruijin. Features included 
in the model were body surface area, BMI, 24-h urine 
protein, presence of diabetic nephropathy, age and pre-
scription of a RAS inhibitor [20]. There are important 
differences between the design and objective of this 
study and our own. Fan et  al. tried to determine the 
best equation to use for a given subject knowing some 
of his/her characteristics, and finally propose an eGFR 
value. This approach is finally similar to using machine 
learning to predict GFR. Instead, our algorithm focuses 
only on creatinine and one equation (EKFC, which is 
supposed to be the most accurate to date) to estimate 
the probability that eGFR is within a given margin of 
error compared to mGFR.

Despite the enthusiastic promise of high performance, 
machine learning algorithms sometimes fall short of 
surpassing well-constructed traditional models [21]. We 
built two logistic regression models, one of them includ-
ing all available covariates despite high variance infla-
tion factors, in order to have fair comparisons with the 
machine learning models which take advantages of all 
these covariates. Our analysis revealed that machine 
learning models, particularly random forest and extreme 
gradient boosting algorithms, outperformed traditional 
logistic regression models in predicting the recom-
mended method for GFR assessment within acceptable 
error margins (P30, P20 and P10).

One of the criticisms levelled at machine learning algo-
rithms is the lack of transparency and interpretability of 
the models, known as the “black box” issue. We assessed 

variable importance to help understanding the influence 
of each variable on the results rendered by the algorithm. 
Analysis revealed that EKFC, age, height, weight and cre-
atinine were of comparable importance while sex had 
virtually no impact on the model (Supplementary Figure 
S3).

The use of p30 is a subject of debate, as it represents 
a relatively broad criterion for clinical decision-making 
at the individual level. However, current equations for 
eGFR do not allow for narrower accuracy thresholds. 
The 2002 KDOQI guidelines deemed P30 satisfactory for 
clinical interpretation in many scenarios [22]. This posi-
tion was reaffirmed in the 2024 KDIGO guidelines on 
evaluation and management of CKD [23]. These guide-
lines, along with the broader literature, emphasize that 
when greater accuracy is required, mGFR should be used, 
even if mGFR is also subject to inherent within-subject 
variability.

Several strengths of our work may be underlined. We 
used a very large cohort of participants from several 
countries in Europe and USA. Participants of all ages, 
from childhood to old age were included, with renal 
function ranging from normal to CKD stage 5 in non-
dialyzed persons with native kidneys and kidney graft. 
We have been able to carry out external validation of 
the models that we developed, which is often lacking in 
studies presenting prognostic models. Finally, we pro-
pose a free web-application made available to physicians 
for their clinical practice. We warn readers against using 
this model exclusively. The choice of GFR assessment 
method should account for several dimensions related to 
the patient as well as the indication for assessment, and 
the clinician’s experience must prevail. The model should 
be viewed as a complementary tool for selecting the most 
appropriate methods for GFR assessment.

Practically, if the probability of EKFC eGFR falling 
within P30 for an individual is low, a measured GFR 
should be obtained. If this is not feasible, measuring 
cystatin C could be used to calculate the mean of cre-
atinine-based and cystatin C-based EKFC estimates, as 
this approach improves accuracy compared to relying on 
either biomarker equation alone [24].

Our study presents some limitations. The protocol 
was not prespecified. We focused on creatinine as the 
only biomarker included in the EKFC equation whereas 
cystatin C may be considered to enhance the accuracy 
of the eGFR with EKFC [24]. Creatinine is the most 
widely available biomarker worldwide, and the recent 
KDIGO guidelines on evaluation and management of 
CKD recommend its use as first choice for GFR evalu-
ation. In these recommendations, cystatin C measure-
ment is advised as second choice and measurement of 
GFR is considered in cases of potential sources of error 
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in eGFR with creatinine and cystatin C, and if a more 
accurate assessment is needed [1]. Moreover, discrepan-
cies may exist between creatinine-based eGFR and cys-
tatin C-based eGFR [25]. Generalizability may be limited 
to certain populations, because we did not include non-
White participants, and the population included con-
tained only European and US subjects.

The difficulties in enhancing the performance of the 
EKFC equation underscore that EKFC P30 is already 
operating at a very high level. However, the value of our 
approach lies in its ability to provide assessments at the 
individual level. Specifically, it may help to identify out-
liers where creatinine-based EKFC eGFR estimates may 
not be reliable, suggesting the need for alternative meth-
ods in such cases. The performance of our models may 
have been constrained by the limited number of features 
available for training the algorithms. Further research on 
the topic of eGFR trustworthiness should consider the 
possibility of including cystatin C in the assessment. The 
inclusion of more features in the algorithm may improve 
the performance.

Conclusions
In conclusion, our study demonstrates a marginal poten-
tial for machine learning models to improve the trust-
worthiness of GFR estimation at the population level. 
The random forest algorithm that we developed enables 
modest improvement to support clinical decision-mak-
ing in kidney function assessment. Our results highlight 
the challenges of using machine learning to address com-
plex clinical problems. Simply increasing the sample size 
is unlikely to significantly enhance model performance. 
Instead, we suggest that further studies should focus on 
incorporating a broader range of variables to optimize 
model accuracy and applicability.
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