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Abstract
Objective  Blood pressure fluctuations during dialysis, including intradialytic hypotension (IDH) and intradialytic 
hypertension (IDHTN), are common complications among patients undergoing maintenance hemodialysis. Early 
prediction of IDH and IDHTN can help reduce the occurrence of these fluctuations. With the development of artificial 
intelligence, machine learning and deep learning models have become increasingly sophisticated in the field of 
hemodialysis. Utilizing machine learning to predict blood pressure fluctuations during dialysis has become a viable 
predictive method.

Methods  Our study included data from 67,524 hemodialysis sessions conducted at Ningbo No.2 Hospital and 
Xiangshan First People’s Hospital from August 1, 2019, to September 30, 2023. 47,053 sessions were used for model 
training and testing, while 20,471 sessions were used for external validation. We collected 45 features, including 
general information, vital signs, blood routine, blood biochemistry, and other relevant data. Data not meeting the 
inclusion criteria were excluded, and feature engineering was performed. The definitions of IDH and IDHTN were 
clarified, and 10 machine learning algorithms were used to build the models. For model development, the dialysis 
data were randomly split into a training set (80%) and a testing set (20%). To evaluate model performance, six metrics 
were used: accuracy, precision, recall, F1 score, ROC-AUC, and PR-AUC. Shapley Additive Explanation (SHAP) method 
was employed to identify eight key features, which were used to develop a clinical application utilizing the Streamlit 
framework.

Results  Statistical analysis showed that IDH occurred in 56.63% of hemodialysis sessions, while the incidence of 
IDHTN was 23.53%. Multiple machine learning models (e.g., CatBoost, RF) were developed to predict IDH and IDHTN 
events. XGBoost performed the best, achieving ROC-AUC scores of 0.89 for both IDH and IDHTN in internal validation, 
with PR-AUC scores of 0.95 and 0.78, and high accuracy, precision, recall, and F1 scores. The SHAP method identified 
pre-dialysis systolic blood pressure, BMI, and pre-dialysis mean arterial pressure as the top three important features. It 
has been translated into a convenient application for use in clinical settings.
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Introduction
End-stage renal disease (ESRD) poses a substantial pub-
lic health challenge due to its increasing prevalence 
worldwide. Currently, over 3  million individuals receive 
treatment for ESRD globally, with this number continu-
ing to grow, driven by an aging population and the ris-
ing incidence of diabetes and cardiovascular diseases [1, 
2]. In mainland China alone, the China National Renal 
Data System (CNRDS) reported 916,647 hemodialy-
sis (HD) patients as of December 2023. HD remains the 
most widely utilized renal replacement therapy; however, 
it is frequently complicated by hemodynamic fluctua-
tions during treatment, including intradialytic hyperten-
sion (IDHTN) and intradialytic hypotension (IDH) [3]. 
These complications significantly impact the safety and 
adequacy of HD, as frequent changes in organ perfusion 
during dialysis can affect cardiac, central nervous system, 
gastrointestinal, and vascular access function, ultimately 
increasing the risk of mortality [4]. Effective management 
of these complications is, therefore, crucial for optimiz-
ing HD outcomes [5].

IDH and IDHTN have been most strongly associated 
with cardiovascular events and mortality. A retrospective 
analysis of 39,497 HD patient records revealed that IDH 
is significantly linked to myocardial infarction, hospital-
ization for heart failure or volume overload, and both 
cardiovascular and all-cause mortality [6]. Furthermore, 
IDH has been shown to cause cerebral ischemia, an addi-
tional form of end-organ damage. It is also associated 
with the accelerated loss of residual renal function and 
vascular access thrombosis. In addition to these long-
term adverse outcomes, IDH and IDHTN frequently 
result in considerable patient discomfort during HD ses-
sions, manifesting as dizziness, weakness, headache, nau-
sea, and vomiting. These symptoms substantially reduce 
the quality of life for HD patients [8].

At present, nephrologists typically address IDH and 
IDHTN reactively, relying on clinical experience to 
intervene after these complications occur. Accurate risk 
prediction of hemodynamic fluctuations could enable 
dialysis staff to implement preventative measures, reduc-
ing their occurrence and impact. Consequently, there is a 
pressing need for improved prevention and management 
strategies for IDH and IDHTN to mitigate long-term 
adverse outcomes and enhance the quality of life for HD 
patients [6]. However, despite extensive research efforts, 
accurate prediction remains challenging due to the com-
plex and multifactorial nature of these conditions across 
diverse clinical settings [7].

At present, medical artificial intelligence (AI) is play-
ing an increasingly important role in various fields of 
nephrology, from diagnosis to treatment [8]. Machine 
learning (ML), a major branch of AI, offers promising 
tools for analyzing large-scale HD data to predict and 
manage blood pressure fluctuations [9].

Unlike other studies that use a single machine learning 
model to predict IDH, we collected a dataset from HD 
patients at Ningbo No. 2 Hospital and Xiangshan First 
People’s Hospital to develop machine learning models 
for predicting both IDH and IDHTN. Totally 45 features 
were gathered from each HD session, extracted from a 
predefined time window prior to the start of dialysis, to 
analyze the factors influencing blood pressure fluctua-
tions. The data from Ningbo No.2 Hospital was used as 
the training and internal validation set, while the data 
from Xiangshan First People’s Hospital served as the 
external validation set. We developed and tested 10 
machine learning models to predict blood pressure fluc-
tuations in HD patients. Unlike previous studies that 
focused solely on predicting IDH and IDHTN, we com-
pared the performance of these 10 models and selected 
the best-performing one. The 8 important features were 
selected, and a clinical application was developed.

Methods
Data collection and processing
Totally 276 patients were included who underwent 
hemodialysis between August 1, 2019, and September 30, 
2023. Data on the hemodialysis process were stored using 
the Hua Mai Healthcare system at Ningbo No.2 Hospital 
and Xiangshan First People’s Hospital. The exclusion cri-
teria were as follows: (1) age under 18 years, (2) missing 
data ≥ 70%, (3) dialysis due to acute kidney injury (AKI), 
and (4) missing pre-dialysis systolic or diastolic blood 
pressure data. From Ningbo No.2 Hospital, 232 hemodi-
alysis patients were included. After excluding 3 patients 
due to being under 18 years old, 4 patients due to AKI, 
3 patients with ≥ 70% missing data, and 4 patients with 
missing pre-dialysis blood pressure data, finally, 218 
patients encompassing 47,053 hemodialysis sessions 
were remained. This portion of the data was used for 
model training and internal validation. From Xiangshan 
First People’s Hospital, 44 hemodialysis patients were 
included; this portion of the data was used for external 
validation. After excluding 1 patient due to AKI, 1 patient 
with ≥ 70% missing data, and 2 patients with missing pre-
dialysis blood pressure data, finally 40 patients encom-
passing 20,471 hemodialysis sessions were remained. 

Conclusion  Using machine learning models to predict IDH and IDHTN during hemodialysis is feasible and provides 
clinically reliable predictive performance. This can help timely implement interventions during hemodialysis to 
prevent problems, reduce blood pressure fluctuations during dialysis, and improve patient outcomes.
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After initial data processing, outliers were also excluded. 
Outliers included patients with pre-dialysis and intra-
dialysis blood pressure < 30 mmHg or > 300 mmHg, as 
measured by the Yuwell YE655D sphygmomanometer. 
After excluding outliers, we compared various imputa-
tion methods, including Mean, KNN, Multiple, Random 
Forest, Median, and Decision Tree imputation. The per-
formance of these methods was evaluated using four 
metrics: R², Mean Squared Error (MSE), Mean Absolute 
Error (MAE), and Relative Error (RE). Ultimately, we 
selected the random forest imputation method to fill in 
the missing values.

Additionally, data integrity, consistency, accuracy, and 
distribution checks were conducted, and the results met 
the required standards. After processing, data from 258 
patients encompassing 67,524 hemodialysis sessions were 
included in the study. Figure 1 shows the entire workflow 
of this study [10, 11].

Definition of IDH and IDHTN
According to the Kidney Disease Outcome Quality Ini-
tiative (K/DOQI) guidelines, IDH was defined as a 
decrease in systolic blood pressure ≥ 20 mmHg or mean 
arterial pressure ≥ 10 mmHg during dialysis accompa-
nied by related symptoms [12]. IDHTN was defined as 
an increase in systolic blood pressure ≥ 10 mmHg during 
or after dialysis over the last 3 or 4 sessions, accompa-
nied by cardiovascular events [13]. Due to missing data 
on symptoms during dialysis and cardiovascular events, 
in this study, the authors defined IDH as a decrease in 
systolic blood pressure ≥ 20 mmHg or mean arterial pres-
sure ≥ 10 mmHg during dialysis. IDHTN was defined as 
an increase in systolic blood pressure ≥ 10 mmHg during 
or after dialysis.

Feature selection
We selected 45 patient characteristics for analysis, 
including primary diseases (chronic glomerulonephri-
tis, hypertension, diabetes mellitus, gout, other primary 
diseases), blood pressure measurements (pre-dialysis 
SBP, pre-dialysis DBP, 1-hour SBP, 2-hour SBP, 3-hour 
SBP, 4-hour SBP, 1-hour DBP, 2-hour DBP, 3-hour DBP, 
4-hour DBP, pre-dialysis MAP, 1-hour MAP, 2-hour 
MAP, 3-hour MAP, 4-hour MAP), demographic char-
acteristics (male, female, age, pre-dialysis weight, BMI, 
height), laboratory tests (WBC, hemoglobin, hemato-
crit, platelet, albumin, calcium, potassium, phosphorus, 
sodium), dialysis adequacy indexes (KT/V, URR), dialysis 
settings (ultrafiltration volume, ultrafiltration rate, dry 
weight, dialysis duration, dialysis frequency), and ultra-
sound and imaging examinations (cardiothoracic ratio 
(CTR), left ventricular mass index (LVMI)), as detailed in 
Table  1 [14]. Eight primary disease characteristics were 

processed as nominal features and converted to one-hot 
encoding.

For data processing, apart from converting primary 
diseases to one-hot encoding, we deleted abnormal data 
values, setting them as missing values, and used random 
forest imputation for missing values. According to defi-
nitions, we labeled normal blood pressure during dialysis 
as 0, hypotension during dialysis as 1, and hypertension 
during dialysis as 2 [15, 16].

Model development and comparison
We obtained a cohort dataset of hemodialysis patient 
sessions, with data from Ningbo No.2 Hospital used for 
model training and testing (80% for training, 20% for 
internal validation) to avoid overfitting. The remaining 
data from Xiangshan First People’s Hospital were used 
for external validation. Ten machine learning models 
were used: Support Vector Machines (SVM), k-Nearest 
Neighbors (KNN), Decision Trees (DT), Random For-
est (RF), Logistic Regression (LR), Naive Bayes (NB), 
Extreme Gradient Boosting (XGBoost), LightGBM, 
CatBoost, and Adaptive Boosting (AdaBoost). The final 
model parameters were optimized using grid search and 
manual tuning. Model performance was evaluated using 
six metrics: receiver operating characteristic area under 
the curve (ROC-AUC), precision-recall area under the 
curve (PR-AUC), accuracy, precision, recall, and F1-score 
[17]. Based on this, calibration and decision curves were 
further employed to comprehensively compare and eval-
uate models with similar performance.

Feature selection and model explanation
Proper interpretation of machine learning models is also 
an important and challenging task. The SHAP method 
was employed to rank the importance of input features 
and interpret the predictive model results. SHAP is based 
on cooperative game theory and provides an unified 
measure of feature importance, ensuring consistent and 
accurate explanations. SHAP offers both global and local 
explanations, elucidating the association between input 
features and IDH/IDHTN. Global explanations give an 
overall view of feature importance across the entire data-
set, while local explanations provide insights into how 
features impact individual predictions. In this study, vari-
ous SHAP visualizations were utilized for feature analy-
sis, including the SHAP Bar and Dot Plot, which provides 
a high-level overview of feature impacts; the SHAP Force 
Plot, which illustrates individual predictions and the con-
tributions of each feature; and the SHAP Heatmap, which 
highlights interactions between features across multiple 
observations. These tools collectively enhance the inter-
pretability of the predictive models and ensure that the 
results are both transparent and understandable [18, 19].
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Fig. 1  Flow chart of the study design
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Table 1  Baseline characteristics
Training and internal validation 
cohort (n = 218)

External validation cohort 
(n = 40)

All cohort 
(n = 258)

Male(n;%) 141; 64.68% 21; 52.50% 162; 62.79%
Female(n;%) 77; 35.32% 19; 47.50% 96; 37.21%
Age(year) 61.8 ± 14.21 61.7 ± 11.21 61.77 ± 13.36
Height(cm) 165.57 ± 8.64 163.38 ± 9.03 164.9 ± 8.82
Pre-dialysis weight(kg) 60.53 ± 12.78 58.98 ± 11.07 60.06 ± 12.3
BMI(kg/m2) 21.98 ± 3.66 21.97 ± 2.92 21.98 ± 3.45
CGN(chronic glomerulonephritis)(n;%) 97; 44.50% 23; 57.50% 120; 46.51%
HTN(hypertension)(n;%) 162; 74.31% 40; 100.00% 202; 78.29%
DM(diabetes mellitus)(n;%) 33; 15.14% 8; 20.00% 41; 15.89%
Gout(n;%) 14; 6.42% 3; 7.50% 17; 6.59%
Others(n;%) 113; 51.83% 17; 42.50% 130; 50.39%
Pre-dialysis heart rate 77.69 ± 13.58 73.43 ± 12.29 76.39 ± 13.34
Pre-dialysis SBP(mmHg) 145.01 ± 23.59 150.25 ± 21.53 146.61 ± 23.11
Pre-dialysis DBP(mmHg) 75.09 ± 13.53 81.25 ± 13.05 76.97 ± 13.68
1-hour SBP(mmHg) 137.89 ± 22.52 140.22 ± 20.23 138.61 ± 21.87
2-hour SBP(mmHg) 135.69 ± 22.49 139.53 ± 19.73 136.87 ± 21.76
3-hour SBP(mmHg) 135.5 ± 23.11 139.40 ± 20.05 136.69 ± 22.29
4-hour SBP(mmHg) 132.26 ± 23.76 136.65 ± 20.30 133.60 ± 22.85
1-hour DBP(mmHg) 74.13 ± 13.05 78.57 ± 12.94 75.49 ± 13.18
2-hour DBP(mmHg) 74.78 ± 13.36 79.10 ± 12.59 76.10 ± 13.28
3-hour DBP(mmHg) 75.42 ± 13.62 79.72 ± 12.75 76.73 ± 13.51
4-hour DBP(mmHg) 74.65 ± 14.01 78.84 ± 12.67 75.93 ± 13.75
Pre-dialysis MAP(mmHg) 98.39 ± 14.22 104.25 ± 14.06 100.18 ± 14.42
1-hour MAP(mmHg) 95.38 ± 13.90 99.12 ± 14.15 96.53 ± 14.08
2-hour MAP(mmHg) 95.08 ± 14.37 99.24 ± 13.75 96.36 ± 14.31
3-hour MAP(mmHg) 95.44 ± 14.73 99.61 ± 13.95 96.72 ± 14.62
4-hour MAP(mmHg) 93.85 ± 15.30 98.11 ± 14.00 95.16 ± 15.05
WBC(white blood cell)(*10^9/L) 6.18 ± 2.08 5.31 ± 1.33 5.91 ± 1.92
Hb(hemoglobin)(g/L) 110.31 ± 17.75 108.40 ± 13.95 109.72 ± 16.70
Hct(hematocrit)(%) 33.7 ± 5.28 33.88 ± 4.32 33.76 ± 5.01
Plt(platelet)(*10^9/L) 185.72 ± 56.27 167.05 ± 51.29 180.01 ± 55.46
Alb(albumin)(g/L) 38.3 ± 4.40 38.48 ± 3.33 38.35 ± 4.10
Ca(calcium)(mmol/L) 2.27 ± 0.23 2.33 ± 0.24 2.29 ± 0.23
K(potassium)(mmol/L) 4.63 ± 0.80 5.01 ± 0.95 4.74 ± 0.87
P(phosphorus)(mmol/L) 1.67 ± 0.58 1.81 ± 0.58 1.71 ± 0.58
Na(sodium)(mmol/L) 138.89 ± 3.23 139.59 ± 11.79 139.11 ± 7.06
KT/V(urea clearance index) 1.57 ± 0.56 1.51 ± 0.26 1.55 ± 0.49
URR(urea reduction ratio) 0.71 ± 0.08 71.28 ± 6.72 22.30 ± 32.73
CTR(cardiothoracic ratio) 0.49 ± 0.05 0.55 ± 0.06 0.51 ± 0.06
LVMI(left ventricular mass index)(g/m2) 101.52 ± 42.20 49.39 ± 30.36 85.57 ± 45.77
DW(dry weight)(kg) 57.9 ± 12.48 57.60 ± 11.35 57.81 ± 12.14
UFV(ultrafiltration volume)(L) 2.63 ± 1.01 2.63 ± 0.85 2.63 ± 0.96
UFR(ultrafiltration rate)(%) 0.66 ± 0.25 0.66 ± 0.22 0.66 ± 0.24
DF(dialysis frequency)(per week) 2.8 ± 0.52 3.97 ± 0.13 3.16 ± 0.70
DD(dialysis duration)(h) 3.98 ± 0.14 3.97 ± 0.13 3.98 ± 0.13
SBP: Systolic blood pressure; DBP: Diastolic blood pressure; MAP: Mean arterial pressure
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Webpage deployment tool
Webpage deployment tool based on the Streamlit frame-
work: A web application was developed on the Python-
based Streamlit framework. When the values of the 9 
corresponding features from the final model are pro-
vided, the application can generate predictions of blood 
pressure changes during dialysis, including normal blood 
pressure, IDH, and IDHTN [20].

Statistical analysis
The data analysis, model development, evaluation, and 
creation of the web-based application were conducted 
using several software tools. Python version 3.10.5 
(https://www.python.org) was used for coding and model 
building, while SPSS Statistics version 27.0 ​(​​​h​t​t​p​s​:​/​/​w​w​
w​.​i​b​m​.​c​o​m​/​s​p​s​s​​​​​) was employed for statistical analysis. 
Additionally, GraphPad Prism version 10.3.0 ​(​​​h​t​t​p​s​:​/​/​w​
w​w​.​g​r​a​p​h​p​a​d​.​c​o​m​​​​​) was utilized for creating high-quality 
graphs and visualizations.

Results
Patient characteristics
The final cohort included 67,524 hemodialysis sessions. 
The data from 47,053 sessions at Ningbo No.2 Hospital 
were used for model training and testing, while the data 
from 20,471 sessions at Xiangshan First People’s Hospi-
tal were reserved for external validation. Comprehensive 
data collection encompassed general information, vital 
signs, complete blood counts, and blood biochemistry, 
totaling 35 features. Detailed baseline statistics of these 
features are provided in Table 1.

In data preprocessing, outliers were identified and 
removed or marked as missing values, followed by data 
imputation. 6 imputation methods—Mean, KNN, Multi-
ple, RF, Median, and Decision Tree—were evaluated. The 
performance of these methods was assessed using four 
metrics: R2, MSE, MAE, and RE. Detailed comparative 
results are provided in Table 2. Based on the comprehen-
sive analysis of the results, the Random Forest imputa-
tion method demonstrated the best performance and was 
therefore selected for imputing missing values.

A thorough statistical analysis of blood pressure 
changes in hemodialysis patients was conducted. The 

main findings are illustrated in Fig.  2.The proportion of 
patients experiencing various blood pressure conditions 
during dialysis was evaluated, with 20.84% maintain-
ing normal blood pressure, 56.63% developing IDH, and 
22.53% experiencing IDHTN (Fig.  2A). The distribution 
of systolic blood pressure across different time points 
during dialysis was examined, revealing a stable trend 
with minimal fluctuations (Fig. 2B). The analysis of IDH 
incidents over time highlighted an upward trend, with 
the occurrence of IDH increasing as dialysis progressed 
(Fig.  2C). A similar examination of IDHTN showed 
an initial rise, peaking at the third hour, followed by a 
decline by the fourth hour (Fig. 2D).Statistical data indi-
cate that IDH remains the most prevalent type of blood 
pressure fluctuation during dialysis. The progressively 
increasing trend of IDH suggests a rising risk of hypo-
tension as dialysis duration extends, underscoring the 
importance of vigilant blood pressure management [4].

Model development and performance comparison
Through the analysis of results from 10 machine learn-
ing models (Tables  3 and 4), the XGBoost, RF, and 
CatBoost models consistently demonstrated superior 
performance across most evaluation metrics for both 
IDH and IDHTN predictions. Internal validation results, 
including ROC and PR curves for each model, are shown 
in Fig.  3. Among all models, XGBoost, RF, and Cat-
Boost achieved the highest areas under the ROC and PR 
curves. To further assess the performance of these three 
models, calibration and decision curves were employed. 
Figure  4A and B indicate that XGBoost outperformed 
RF and CatBoost, providing the most reliable predic-
tions. The XGBoost algorithm is an ensemble method 
based on decision trees, where individual trees are built 
sequentially. During the construction of each decision 
tree, weights are assigned to independent variables to 
optimize predictions for the target outcome. XGBoost 
uses a gradient boosting framework, iteratively refining 
the model by adding decision trees that correct errors 
from previous iterations. This iterative refinement makes 
XGBoost a highly robust and accurate predictive model 
[21].

Identification of the final model
Upon comparing the performance metrics, XGBoost was 
identified as the final model due to its superior results. 
For IDH prediction, XGBoost achieved a high ROC-AUC 
of 0.89 and a PR-AUC of 0.95. Additionally, it main-
tained a balanced performance with an accuracy of 0.84, 
precision of 0.87, recall of 0.93, and an F1-score of 0.90. 
Similarly, for IDHTN prediction, XGBoost performed 
admirably, with a ROC-AUC of 0.89, PR-AUC of 0.78, 
accuracy of 0.85, precision of 0.77, recall of 0.64, and an 
F1-score of 0.70. These results underscore the robustness 

Table 2  Performance comparison of imputation methods
Method R2 MSE MAE RE
Mean 0.6326 0.0831 0.2209 0.2545
KNN 0.7395 0.0626 0.1827 0.2104
Multiple 0.8484 0.0414 0.1462 0.1685
Random Forest 0.8821 0.0341 0.1281 0.1477
Median 0.6543 0.0798 0.2150 0.2476
Decision Tree 0.8600 0.0380 0.1350 0.1556
R²: Coefficient of Determination; MSE: Mean Squared Error; MAE: Mean Absolute 
Error; RE: Relative Error

https://www.python.org
https://www.ibm.com/spss
https://www.ibm.com/spss
https://www.graphpad.com
https://www.graphpad.com
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Table 3  IDH machine learning results
XGBoost SVM KNN DT RF LR NB AdaBoost LightGBM CatBoost

ROC-AUC 0.89 0.87 0.84 0.72 0.89 0.79 0.74 0.81 0.88 0.89
PR-AUC 0.95 0.94 0.92 0.89 0.95 0.90 0.85 0.91 0.95 0.95
accuracy 0.84 0.82 0.81 0.76 0.83 0.76 0.71 0.77 0.83 0.84
precision 0.87 0.83 0.84 0.84 0.85 0.79 0.82 0.80 0.85 0.86
recall 0.93 0.93 0.90 0.83 0.92 0.90 0.76 0.90 0.93 0.92
F1-score 0.90 0.88 0.87 0.83 0.88 0.84 0.79 0.85 0.88 0.89

Table 4  IDHTN machine learning results
XGBoost SVM KNN DT RF LR NB AdaBoost LightGBM CatBoost

ROC-AUC 0.89 0.87 0.84 0.72 0.89 0.79 0.74 0.81 0.88 0.89
PR-AUC 0.78 0.76 0.72 0.66 0.78 0.60 0.55 0.62 0.77 0.79
accuracy 0.85 0.82 0.81 0.76 0.83 0.76 0.71 0.77 0.83 0.84
precision 0.77 0.76 0.72 0.59 0.75 0.63 0.50 0.64 0.76 0.77
recall 0.64 0.54 0.59 0.61 0.62 0.42 0.59 0.46 0.59 0.62
F1-score 0.70 0.63 0.65 0.60 0.68 0.50 0.54 0.54 0.67 0.69
XGBoost: Extreme Gradient Boosting; SVM: Support Vector Machine; KNN: K-Nearest Neighbors; DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; NB: 
Naive Bayes; AdaBoost: Adaptive Boosting; LightGBM: Light Gradient Boosting Machine; CatBoost: Categorical Boosting; ROC-AUC: Receiver Operating Characteristic 
- Area Under the Curve; PR-AUC: Precision-Recall - Area Under the Curve

Fig. 2  Data analysis of blood pressure changes during dialysis. (A) the proportion of patients with different blood pressure conditions during dialysis. 
(B) the distribution of systolic blood pressure (SBP) at various time points during dialysis. (C) the proportion and number of IDH incidents at different 
times during dialysis. (D) the proportion and nuer of IDHTN incidents at different times during dialysis. IDH: Intradialytic Hypotension; IDHTN: Intradialytic 
Hypertension
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and reliability of the XGBoost model for predicting both 
IDH and IDHTN.

External validation of the final model
The robustness of the XGBoost model was further tested 
through external validation using an independent data-
set of 20,471 hemodialysis sessions. The model’s perfor-
mance remained consistently high, with ROC-AUC and 
PR-AUC scores comparable to those obtained during 
internal validation. Among the three models—XGBoost, 
RF, and CatBoost—all achieved ROC-AUC values of 
at least 0.93 for predicting IDH and IDHTN. The PR-
AUC values for predicting IDH were at least 0.97, while 
the PR-AUC values for predicting IDHTN were slightly 
lower but still at least 0.85. Figure 5 illustrates the ROC 
and PR curves for both IDH and IDHTN predictions dur-
ing external validation, confirming the model’s generaliz-
ability and effectiveness in a real-world setting.

Model explanation
To enhance the interpretability of the XGBoost model, 
SHAP was employed. SHAP assigns each feature an 
importance value for a particular prediction, leveraging 

Shapley values from cooperative game theory to pro-
vide consistent and interpretable explanations of model 
outputs. It decomposes a prediction into contribu-
tions from each feature, ensuring fairness and accuracy 
in feature impact analysis. The SHAP summary bar 
plot and dot plot for all 35 features used in the predic-
tion are shown in Supplemental Fig.  1 and Supplemen-
tal Fig. 2.The impact of the top 8 features on the model’s 
output is highlighted in a SHAP summary bar plot, with 
pre-dialysis SBP and BMI emerging as significant pre-
dictors, as presented in Fig. 6A.The impact of the top 8 
features on the model’s output is highlighted in a SHAP 
summary dot plot, as showed in Fig. 6B.The color gradi-
ent ranging from blue to red represents the magnitude 
of the feature values for each data point. Red corre-
sponds to higher values of the respective feature, while 
blue indicates lower values. This color-coding helps to 
illustrate how the variation in feature values affects the 
SHAP values and the model’s prediction. In Fig. 6C, the 
X-axis represents standardized pre-dialysis SBP values, 
while the Y-axis indicates the contribution of pre-dialysis 
SBP to the model’s prediction. The color gradient, rang-
ing from blue to red, corresponds to pre-dialysis DBP 

Fig. 3  The internal validation results of 10 machine learning models for predicting intradialytic hypotension and intradialytic hypertension, including 
ROC and PR curves. (A) the ROC curves of the 10 models for predicting intradialytic hypotension, (B) the PR curves of the 10 models for predicting in-
tradialytic hypotension, (C) the ROC curves of the 10 models for predicting intradialytic hypertension, (D) the PR curves of the 10 models for predicting 
intradialytic hypertension
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values. There is a clear negative correlation between pre-
dialysis SBP and its SHAP value, suggesting that higher 
pre-dialysis SBP reduces the predicted outcome. Addi-
tionally, lower DBP values (blue) correspond to higher 
SHAP values for SBP, whereas higher DBP values (red) 
correspond to lower SHAP values, indicating an interac-
tion effect where DBP modulates the influence of SBP on 

the prediction. The SHAP force plot provides a detailed 
explanation for a specific sample, visually illustrating how 
individual features contribute to the model’s prediction. 
Red arrows represent features that increase the predic-
tion, while blue arrows represent features that decrease 
it. For example, “pre-dialysis MAP” and “pre-dialysis 
SBP” push the prediction higher, while “hematocrit,” 

Fig. 5  The external validation results of 10 machine learning models for predicting intradialytic hypotension and intradialytic hypertension, including 
ROC and PR curves. (A) the ROC curves of the 10 models for predicting intradialytic hypotension, (B) the Precision-Recall curves of the 10 models for 
predicting intradialytic hypotension, (C) the ROC curves of the 10 models for predicting intradialytic hypertension, (D) the Precision-Recall curves of the 
10 models for predicting intradialytic hypertension

 

Fig. 4  (A) Calibration curves for XGBoost, RandomForest, and CatBoost models. (B) Decision curves for XGBoost, RandomForest, and CatBoost models
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“BMI,” and “age” have a negative influence, pulling the 
prediction lower, as presented in Fig.  7. Additionally, a 
heatmap represents the correlation matrix of SHAP val-
ues for the eight most important features is displayed in 
Fig.  8. The color gradient spans from red to teal, where 
red indicates a strong positive correlation (close to 1) 
and teal indicates a strong negative correlation (close to 
-1). The intensity of the color reflects the strength of the 
correlation; deeper shades represent stronger correla-
tions, while lighter shades indicate weaker correlations. 
Each cell corresponds to the correlation between two 
features, with feature names labeled along the y-axis and 
x-axis. This heatmap offers a visual understanding of the 

relationships and interdependencies among the selected 
feature [22, 23].

Clinical utility
Based on the SHAP summary bar plot and SHAP sum-
mary dot plot, we identified the 8 most important fea-
tures, including (1. Pre-dialysis MAP, 2. LVMI, 3. Age, 
4. Hematocrit, 5. Pre-dialysis Calcium, 6. Pre-dialysis 
Heart Rate, 7. BMI, and 8. Pre-dialysis SBP). The sim-
plified model’s ROC-AUC was 0.88, PR-AUC was 0.77, 
Accuracy was 0.83, Precision was 0.74, Recall was 0.62, 
and F1-Score was 0.68. Its ROC-AUC curve, PR-AUC 
curve, calibration curve, and decision curve are shown 
in Supplemental Fig. 3. Using the 8 features and adding 

Fig. 7  SHAP force plot. Feature contributions: pre-dialysis MAP (79.67) and pre-dialysis SBP (117.0): Positive influence. Hematocrit (36.5), BMI (21.18), and 
age (67.0): Negative influence. Red indicates higher prediction, blue indicates lower prediction

 

Fig. 6  (A) SHAP summary bar plot. (B) SHAP summary dot plot. (C) Scatter plot of pre-dialysis SBP vs. its SHAP values, colored by pre-dialysis DBP, indicat-
ing a negative relationship. Red indicates that a higher feature value has the corresponding impact, as indicated by the x-axis, on model output. Blue 
indicates the impact of lower feature values on model output
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ultrafiltration volume, we streamlined our XGBoost 
model and developed a web-based prediction application 
using the Streamlit framework. The software interface 
is shown in Fig. 9. This application allows users to input 
relevant clinical data and generate predictive outcomes, 
such as the likelihood of IDH [24].

Discussion
Our study presented the development and validation 
of machine learning models for predicting IDH and 
IDHTN in hemodialysis patients, utilizing extensive data 
from two hospitals. We demonstrated the feasibility and 
potential of these models to improve patient outcomes 
through accurate, real-time prediction of blood pressure 
fluctuations during dialysis. A comparative analysis of ten 
machine learning models revealed that XGBoost con-
sistently outperformed other algorithms, such as Ran-
dom Forest (RF) and CatBoost, across multiple metrics, 

including ROC-AUC, PR-AUC, accuracy, precision, 
recall, and F1-score. XGBoost’s superior performance 
was attributed to its ability to handle complex data struc-
tures and capture intricate relationships between fea-
tures, with high ROC-AUC and PR-AUC values in both 
internal and external validations underscoring its reliabil-
ity and generalizability. This study was the first to show-
case multiple machine learning models for predicting 
IDH and IDHTN, particularly addressing the unclear and 
complex mechanisms underlying these conditions, which 
involved factors such as pre-dialysis SBP and MAP. Our 
models, based on data from Hua Mai Healthcare Sys-
tem, offered a promising tool for identifying patients who 
could benefit from targeted interventions [25].

A key challenge in deploying machine learning mod-
els in clinical practice was their interpretability. We 
addressed this issue using SHAP methods, which pro-
vided both global and local explanations for model 

Fig. 8  The heatmap of SHAP values for the most important 8 features. The color range spans from red to teal, with red indicating positive correlation 
(correlation coefficient close to 1) and teal indicating negative correlation (correlation coefficient close to -1). The intensity of the color represents the 
strength of the correlation. Each cell in the heatmap represents the correlation between two features, with the labels on the left and bottom indicating 
the specific feature names. This heatmap provides a visual representation of the relationships between the selected features
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predictions. SHAP analysis highlighted pre-dialysis SBP 
and pre-dialysis MAP as significant predictors of IDH 
and IDHTN. This insight aligned with clinical under-
standing, as blood pressure dynamics were critical 

indicators of dialysis outcomes. SHAP summary bar 
plots, dot plots, force plots, and heatmaps clearly illus-
trated the impact of various features on the model’s pre-
dictions [26].

Fig. 9  Convenient application for clinical utility. The final prediction model with nine clinical features is deployed for use in predicting intradialytic blood 
pressure outcomes. Upon entering the actual values for each of the nine features (pre-dialysis MAP, LVMI, age, hematocrit, pre-dialysis calcium, pre-dialysis 
HR, BMI, pre-dialysis SBP and ultrafiltration volume), the application automatically classifies the prediction into categories such as “normal blood pressure”, 
“intradialytic hypotension” or “intradialytic hypertension” In this instance, based on the entered data, the result was classified as “intradialytic hypotension”
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Implementing our web-based prediction application 
in clinical settings could transform the management of 
hemodialysis patients through proactive interventions. 
By accurately predicting IDH and IDHTN, the applica-
tion enabled healthcare providers to adjust treatment 
regimens, such as fluid removal rates and antihyper-
tensive medication dosages, to mitigate adverse events. 
This real-time predictive capability could significantly 
enhance patient safety and the overall effectiveness of 
dialysis treatment. Moreover, integrating the applica-
tion into hemodialysis systems for real-time prediction, 
validated through clinical trials, held promise for reduc-
ing complications and improving patient outcomes. This 
advancement contributed to medical technology and 
aligned with broader socioeconomic goals of reducing 
healthcare costs associated with managing ESRD compli-
cations [27].

Our study highlighted the importance of controlling 
pre-dialysis blood pressure changes as a significant factor 
in promoting IDH and IDHTN. Although potassium and 
phosphate were generally considered the most impactful 
electrolytes for hemodialysis patients, our study found 
that pre-dialysis calcium had the greatest influence on 
blood pressure changes during dialysis, followed by pre-
dialysis phosphate. This finding diverged from current 
understanding and warranted further investigation [28].

Despite the encouraging results, our study had several 
limitations. The dataset was sourced from two hospitals 
in China, which may have limited the generalizability of 
the findings to other populations. Additionally, while the 
model performed well in predicting IDH and IDHTN, 
it did not account for other dialysis complications. Data 
collection and labeling were potentially influenced by 
biases from individual healthcare providers and institu-
tional protocols, and the dataset, spanning nearly two 
years, resulted in a limited sample size. Furthermore, 
missing and anomalous data could have impacted the 
accuracy of the analysis. The model also did not consider 
potential interventions, such as the use of antihyperten-
sive drugs or changes in ultrafiltration settings after treat-
ment initiation, which may have introduced inaccuracies, 
as only historical patient data were available for training 
[29]. Furthermore, pre-dialysis SBP, BMI, and pre-dialysis 
MAP were identified as the three most influential factors 
affecting intradialytic blood pressure changes. The clini-
cal relevance of these variables in predicting IDH and 
IDHTN warrants further investigation.

In future studies, we plan to conduct in-depth analyses 
of key feature variables, enhance the functionality and 
user interface of the web-based application, and expand 
the dataset to include a broader and more diverse patient 
population. Expanding the study area to incorporate 
multicenter datasets will strengthen the generalizability 
of the findings. Additionally, integrating more clinical 

parameters will improve the model’s comprehensiveness 
[30]. We also aim to standardize monitoring equipment 
for hemodialysis patients and control environmental 
variability to minimize research bias. Based on the appli-
cation model, timely interventions during hemodialysis—
such as adjusting ultrafiltration volume or administering 
blood pressure-regulating medications—could be imple-
mented to stabilize patients’ blood pressure. Expanding 
and refining the training and testing datasets, along with 
optimizing the model code, will be essential for devel-
oping a robust clinical application capable of real-time 
blood pressure prediction. Usability testing of the soft-
ware and collecting feedback from hemodialysis patients 
will further guide improvements, ensuring the software 
meets clinical needs effectively [31].

Overall, this paper presented multiple machine learn-
ing models for predicting IDH and IDHTN, and iden-
tified key factors influencing blood pressure changes 
during dialysis using SHAP methods. We demonstrated 
the practical utility of machine learning in predicting 
these fluctuations and highlighted critical features that 
required attention. Moving forward, we would focus on 
refining and enhancing the clinical application software 
to ensure its readiness for mature use in clinical practice. 
This included further developing the predictive model to 
increase its maturity, improving its interpretability for 
clinicians, and ensuring its broad acceptance across dif-
ferent institutions.

Supplementary Information
The online version contains supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​1​8​6​​/​s​​1​2​8​8​2​-​0​2​5​-​0​3​9​5​9​-​x.

Supplementary Material 1

Acknowledgements
We thanked Ningbo No.2 Hospital and Xiangshan First People’s Hospital for 
their data collection support.

Author contributions
Zhijian Ren conducted model development, software creation, and 
manuscript writing. Minqiao Zhang and Pingping Wang organized the data 
and created the charts. Kanan Chen, Jing Wang, Lingping Wu, Yue Hong, and 
Yihui Qu collected the data. Qun Luo and Kedan Cai provided manuscript 
guidance.

Funding
This work was supported in part by funds from the Zhejiang Provincial 
Medical and Health Project (2024KY336), the Provincial and Municipal Joint 
Medical Key Discipline (2022-S03), the Ningbo Health Science and Technology 
Plan Project (2023Y89), the Ningbo Major Research and Development Plan 
Project(2024Z213)and the Ningbo City Public Welfare Research Program 
(2024S162).

Data availability
Approval for this study was obtained from the ethics committee of Ningbo 
No.2 Hospital. As the datasets were considered the property of these 
institutions, data release to third parties requires permission from the 
institutional Health Data Oversight Committee (HDOC). Requests for data 
can be made to the HDOC Administrator at Ningbo No.2 Hospital and will be 

https://doi.org/10.1186/s12882-025-03959-x
https://doi.org/10.1186/s12882-025-03959-x


Page 14 of 15Ren et al. BMC Nephrology           (2025) 26:82 

evaluated based on principles such as public benefit, fairness, transparency, 
and responsible stewardship. The HDOC ensures no sale or barter of data, 
restricts redisclosure, limits data to the minimum necessary, and reviews for 
conflicts of interest. Data releases require a data use agreement, and requests 
are typically reviewed within 2–4 weeks. Once approved, the Technology 
Development Group will facilitate the data provision.

Declarations

Ethics approval and consent to participate
In China, all experimental protocols were approved by the Ethics Committee 
of Ningbo Second Hospital (Ethics Approval Number: KY202301501) and the 
Ethics Committee of Xiangshan County First People’s Hospital (Ethics Approval 
Number: XYYJ-2024-660). This study utilized de-identified data from patients 
undergoing hemodialysis at Ningbo Second Hospital and Xiangshan County 
First People’s Hospital between August 1, 2019, and September 30, 2023. The 
data no longer contained personally identifiable information, and the analysis 
posed minimal risk to participants. In accordance with Article 5(1) of Sect. 5, 
Chap. 2, from the 2023 Guidelines for the Establishment of Ethics Committees 
for Clinical Research Involving Humans, as well as the Declaration of Helsinki, 
the Ethics Committees granted a waiver of informed consent due to the 
retrospective nature of the study.

Competing interests
The authors declare no competing interests.

Clinical trial number
Not applicable.

Author details
1Department of Nephrology, Ningbo No.2 Hospital, Ningbo, PR China
2Department of Nephrology, Ninghai County Hospital of Traditional 
Chinese Medicine, Ningbo, PR China
3Department of Nephrology, the First People’s Hospital of Xiangshan, 
Ningbo 315700, PR China
4Department of Rehabilitation, Ninghai First Hospital, Ningbo, PR China

Received: 29 August 2024 / Accepted: 10 January 2025

References
1.	 Viecelli AK, Lok CE. Hemodialysis vascular access in the elderly-getting it right. 

Kidney Int. 2019;95(1):38–49. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​k​i​n​t​.​2​0​1​8​.​0​9​.​0​1​6.
2.	 Yang X, Zhao D, Yu F, et al. An optimized machine learning framework for 

predicting intradialytic hypotension using indexes of chronic kidney disease-
mineral and bone disorders. Comput Biol Med. 2022;145:105510. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​
o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​c​o​​m​p​b​​i​o​m​e​​d​.​​2​0​2​2​.​1​0​5​5​1​0.

3.	 Hirawa N. Blood pressure management in hemodialysis patients. Hypertens 
Res. 2023;46(7):1807–9. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​4​4​0​-​0​2​3​-​0​1​2​7​9​-​x.

4.	 Gómez-Pulido JA, Gómez-Pulido JM, Rodríguez-Puyol D, et al. Predicting the 
Appearance of Hypotension during Hemodialysis Sessions using machine 
learning classifiers. Int J Environ Res Public Health. 2021;18(5):2364. ​h​t​t​p​​s​:​/​​/​d​o​
i​​.​o​​r​g​/​​1​0​.​​3​3​9​0​​/​i​​j​e​r​p​h​1​8​0​5​2​3​6​4.

5.	 Keane DF, Raimann JG, Zhang H, et al. The time of onset of intradialytic hypo-
tension during a hemodialysis session associates with clinical parameters and 
mortality. Kidney Int. 2021;99(6):1408–17. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​k​i​n​t​.​2​0​2​1​.​
0​1​.​0​1​8.

6.	 Kanbay M, Ertuglu LA, Afsar B, et al. An update review of intradialytic hypo-
tension: concept, risk factors, clinical implications and management. Clin 
Kidney J. 2020;13(6):981–93. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​9​3​​/​c​​k​j​/​s​f​a​a​0​7​8.

7.	 Dashtban A, Mizani MA, Pasea L, et al. Identifying subtypes of chronic kidney 
disease with machine learning: development, internal validation and prog-
nostic validation using linked electronic health records in 350,067 individuals. 
EBioMedicine. 2023;89:104489. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​e​b​​i​o​m​​.​2​0​2​​3​.​​1​0​4​4​8​9.

8.	 Hu J, Xu J, Li M, et al. Identification and validation of an explainable predic-
tion model of acute kidney injury with prognostic implications in critically 
ill children: a prospective multicenter cohort study. EClinicalMedicine. 
2024;68:102409. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​e​c​​l​i​n​​m​.​2​0​​2​3​​.​1​0​2​4​0​9.

9.	 Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for 
biologists. Nat Rev Mol Cell Biol. 2022;23(1):40–55. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​
1​5​8​0​-​0​2​1​-​0​0​4​0​7​-​0.

10.	 Graterol Torres F, Molina M, Soler-Majoral J, et al. Evolving concepts on 
inflaatory biomarkers and malnutrition in chronic kidney disease. Nutrients. 
2022;14(20):4297. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​9​0​​/​n​​u​1​4​2​0​4​2​9​7.

11.	 Yang X, Zhao D, Yu F, et al. Boosted machine learning model for predicting 
intradialytic hypotension using serum biomarkers of nutrition. Comput Biol 
Med. 2022;147:105752. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​c​o​​m​p​b​​i​o​m​e​​d​.​​2​0​2​2​.​1​0​5​7​5​2.

12.	 Flythe JE, Xue H, Lynch KE, et al. Association of mortality risk with various 
definitions of intradialytic hypotension. J Am Soc Nephrol. 2015;26(3):724–34. ​
h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​6​8​1​​/​A​​S​N​.​2​0​1​4​0​2​0​2​2​2.

13.	 Bansal N, Artinian NT, Bakris G, et al. American Heart Association Council on 
the kidney in Cardiovascular Disease; Council on Cardiovascular and Stroke 
nursing; and Council on Epidemiology and Prevention. Hypertension in 
patients treated with In-Center maintenance hemodialysis: current evidence 
and Future opportunities: A Scientific Statement from the American Heart 
Association. Hypertension. 2023;80(6):e112–22. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​6​1​​/​H​​Y​P​.​​0​
0​0​​0​0​0​0​​0​0​​0​0​0​0​2​3​0.

14.	 Clift AK, Mahon H, Khan G, et al. Identifying patients with undiagnosed small 
intestinal neuroendocrine tumours in primary care using statistical and 
machine learning: model development and validation study. Br J Cancer. 
2024;131(2):305–11. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​4​1​6​-​0​2​4​-​0​2​7​3​6​-​1.

15.	 Hecking M, Madero M, Port FK, et al. Fluid volume management in hemodi-
alysis: never give up! Kidney Int. 2023;103(1):2–5. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​k​i​n​
t​.​2​0​2​2​.​0​9​.​0​2​1.

16.	 Yoo D, Divard G, Raynaud M, et al. A machine learning-driven virtual Biopsy 
System for kidney transplant patients. Nat Coun. 2024;15(1):554. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​4​6​7​-​0​2​3​-​4​4​5​9​5​-​z.

17.	 Kishi S, Kadoya H, Kashihara N. Treatment of chronic kidney disease in older 
populations. Nat Rev Nephrol. 2024;20(9):586–602. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​
1​5​8​1​-​0​2​4​-​0​0​8​5​4​-​w.

18.	 Kotanko P, Zhang H, Wang Y. Artificial Intelligence and Machine Learning in 
Dialysis: Ready for Prime Time? Clin J Am Soc Nephrol. 2023;18(6):803–5. ​h​t​t​p​​
s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​2​2​1​5​​/​C​​J​N​.​​0​0​0​​0​0​0​0​​0​0​​0​0​0​0​0​8​9.

19.	 Correa S, Mc Causland FR. Leveraging Deep Learning to Improve Safety of 
Outpatient Hemodialysis. Clin J Am Soc Nephrol. 2021;16(3):343–4. ​h​t​t​p​​s​:​/​​/​d​o​
i​​.​o​​r​g​/​​1​0​.​​2​2​1​5​​/​C​​J​N​.​0​0​4​5​0​1​2​1.

20.	 Huang JC, Tsai YC, Wu PY, et al. Predictive modeling of blood pressure during 
hemodialysis: a comparison of linear model, random forest, support vector 
regression, XGBoost, LASSO regression and ensele method. Comput Methods 
Programs Biomed. 2020;195:105536. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​c​m​p​b​.​2​0​2​0​.​1​0​5​
5​3​6.

21.	 Lee H, Yun D, Yoo J, et al. Deep learning model for real-time prediction of 
Intradialytic Hypotension. Clin J Am Soc Nephrol. 2021;16(3):396–406. ​h​t​t​p​​s​:​/​​/​
d​o​i​​.​o​​r​g​/​​1​0​.​​2​2​1​5​​/​C​​J​N​.​0​9​2​8​0​6​2​0.

22.	 Sars B, van der Sande FM, Kooman JP. Intradialytic hypotension: mechanisms 
and outcome. Blood Purif. 2020;49(1–2):158–67. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​5​9​​/​0​​0​0​5​
0​3​7​7​6.

23.	 Wang F, Wang Y, Tian Y, et al. Pattern recognition and prognostic analysis of 
longitudinal blood pressure records in hemodialysis treatment based on a 
convolutional neural network. J Biomed Inf. 2019;98:103271. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​
0​.​​1​0​1​6​​/​j​​.​j​b​i​.​2​0​1​9​.​1​0​3​2​7​1.

24.	 Correa S, Scovner KM, Tumlin JA, et al. Electrolyte Changes in Contemporary 
hemodialysis: a secondary analysis of the monitoring in Dialysis (MiD) Study. 
Kidney360. 2021;2(4):695–707. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​4​0​6​​7​/​​K​I​D​.​0​0​0​7​4​5​2​0​2​0.

25.	 GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of 
death and life expectancy decomposition in 204 countries and territories and 
811 subnational locations, 1990–2021: a systematic analysis for the Global 
Burden of Disease Study 2021. Lancet. 2024;403(10440):2100–2132. doi: 
10.1016/S0140-6736(24)00367-2. Epub 2024 Apr 3. Erratum in: Lancet. 2024 
May 18;403(10440):1988. 

26.	 .Zamanzadeh D, Feng J, Petousis P, et al. Data-driven prediction of continuous 
renal replacement therapy survival. Nat Coun. 2024;15(1):5440. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​4​6​7​-​0​2​4​-​4​9​7​6​3​-​3.

27.	 Collins GS, Moons KGM, Dhiman P, et al. TRIPOD + AI statement: updated 
guidance for reporting clinical prediction models that use regression or 
machine learning methods. BMJ. 2024;385:e078378. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​3​6​​/​
b​​m​j​-​2​0​2​3​-​0​7​8​3​7​8.

28.	 Liu P, Sawhney S, Heide-Jørgensen U, et al. Predicting the risks of kid-
ney failure and death in adults with moderate to severe chronic kidney 

https://doi.org/10.1016/j.kint.2018.09.016
https://doi.org/10.1016/j.compbiomed.2022.105510
https://doi.org/10.1016/j.compbiomed.2022.105510
https://doi.org/10.1038/s41440-023-01279-x
https://doi.org/10.3390/ijerph18052364
https://doi.org/10.3390/ijerph18052364
https://doi.org/10.1016/j.kint.2021.01.018
https://doi.org/10.1016/j.kint.2021.01.018
https://doi.org/10.1093/ckj/sfaa078
https://doi.org/10.1016/j.ebiom.2023.104489
https://doi.org/10.1016/j.eclinm.2023.102409
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.3390/nu14204297
https://doi.org/10.1016/j.compbiomed.2022.105752
https://doi.org/10.1681/ASN.2014020222
https://doi.org/10.1681/ASN.2014020222
https://doi.org/10.1161/HYP.0000000000000230
https://doi.org/10.1161/HYP.0000000000000230
https://doi.org/10.1038/s41416-024-02736-1
https://doi.org/10.1016/j.kint.2022.09.021
https://doi.org/10.1016/j.kint.2022.09.021
https://doi.org/10.1038/s41467-023-44595-z
https://doi.org/10.1038/s41467-023-44595-z
https://doi.org/10.1038/s41581-024-00854-w
https://doi.org/10.1038/s41581-024-00854-w
https://doi.org/10.2215/CJN.0000000000000089
https://doi.org/10.2215/CJN.0000000000000089
https://doi.org/10.2215/CJN.00450121
https://doi.org/10.2215/CJN.00450121
https://doi.org/10.1016/j.cmpb.2020.105536
https://doi.org/10.1016/j.cmpb.2020.105536
https://doi.org/10.2215/CJN.09280620
https://doi.org/10.2215/CJN.09280620
https://doi.org/10.1159/000503776
https://doi.org/10.1159/000503776
https://doi.org/10.1016/j.jbi.2019.103271
https://doi.org/10.1016/j.jbi.2019.103271
https://doi.org/10.34067/KID.0007452020
https://doi.org/10.1038/s41467-024-49763-3
https://doi.org/10.1038/s41467-024-49763-3
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.1136/bmj-2023-078378


Page 15 of 15Ren et al. BMC Nephrology           (2025) 26:82 

disease: multinational, longitudinal, population based, cohort study. BMJ. 
2024;385:e078063. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​3​6​​/​b​​m​j​-​2​0​2​3​-​0​7​8​0​6​3.

29.	 Charkviani M, Gregoire JR. Enhancing Nephrology Education: a 10-Year expe-
rience on Fellow-Led Quality Improvement projects in a Hemodialysis Unit. 
Mayo Clin Proc. 2024;99(8):1342–5. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​m​a​​y​o​c​​p​.​2​0​​2​4​​.​0​4​.​
0​0​3.

30.	 Yang IN, Liu CF, Chien CC, et al. Personalized prediction of intradialytic 
hypotension in clinical practice: development and evaluation of a novel 
AI dashboard incorporating risk factors from previous and current dialysis 

sessions. Int J Med Inf. 2024;190:105538. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​i​j​​m​e​d​​i​n​f​.​​2​0​​
2​4​.​1​0​5​5​3​8.

31.	 Mehta MC, Katz IT, Jha AK. Transforming Global Health with AI. N Engl J Med. 
2020;382(9):791–3. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​​o​r​​g​​/​​1​0​​.​1​0​​​5​6​​/​N​E​J​M​p​1​9​1​2​0​7​9.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1136/bmj-2023-078063
https://doi.org/10.1016/j.mayocp.2024.04.003
https://doi.org/10.1016/j.mayocp.2024.04.003
https://doi.org/10.1016/j.ijmedinf.2024.105538
https://doi.org/10.1016/j.ijmedinf.2024.105538
https://doi.org/10.1056/NEJMp1912079

	﻿Research on the development of an intelligent prediction model for blood pressure variability during hemodialysis
	﻿Abstract
	﻿Introduction
	﻿Methods
	﻿Data collection and processing
	﻿Definition of IDH and IDHTN
	﻿Feature selection
	﻿Model development and comparison
	﻿Feature selection and model explanation
	﻿Webpage deployment tool
	﻿Statistical analysis

	﻿Results
	﻿Patient characteristics
	﻿Model development and performance comparison
	﻿Identification of the final model
	﻿External validation of the final model
	﻿Model explanation
	﻿Clinical utility

	﻿Discussion
	﻿References


